BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31933715)

  • 21. Elasto-Inertial Focusing Mechanisms of Particles in Shear-Thinning Viscoelastic Fluid in Rectangular Microchannels.
    Naderi MM; Barilla L; Zhou J; Papautsky I; Peng Z
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial migration of aerosol particles in three-dimensional microfluidic channels.
    Qian S; Jiang M; Liu Z
    Particuology; 2021 Apr; 55():23-34. PubMed ID: 38620251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Ionic Strength on Lateral Particle Migration in Shear-Thinning Xanthan Gum Solutions.
    Cho M; Hong SO; Lee SH; Hyun K; Kim JM
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31443169
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Numerical Study on the Distribution of Rodlike Particles in Laminar Flows of Power Law Fluids Past a Cylinder.
    Lin W; Li Z; Zhang S; Lin J
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping inertial migration in the cross section of a microfluidic channel with high-speed imaging.
    Zhou J; Peng Z; Papautsky I
    Microsyst Nanoeng; 2020; 6():105. PubMed ID: 34567714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active Control of Inertial Focusing Positions and Particle Separations Enabled by Velocity Profile Tuning with Coflow Systems.
    Lee D; Nam SM; Kim JA; Di Carlo D; Lee W
    Anal Chem; 2018 Feb; 90(4):2902-2911. PubMed ID: 29376342
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of the internal structure of straight microchannels on inertial transport behavior of particles.
    Dong H; Huang L; Zhao L
    Heliyon; 2024 Apr; 10(8):e29577. PubMed ID: 38655341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inertial Separation of Particles Assisted by Symmetrical Sheath Flows in a Straight Microchannel.
    Zhang T; Inglis DW; Ngo L; Wang Y; Hosokawa Y; Yalikun Y; Li M
    Anal Chem; 2023 Jul; 95(29):11132-11140. PubMed ID: 37455389
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of Hydrodynamic Mechanism on Particles Focusing in Micro-Channel Flows.
    Wang Q; Yuan D; Li W
    Micromachines (Basel); 2017 Jun; 8(7):. PubMed ID: 30400388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heat Transfer and Flow Structures of Laminar Confined Slot Impingement Jet with Power-Law Non-Newtonian Fluid.
    Qiang Y; Wei L; Luo X; Jian H; Wang W; Li F
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size-Dependent Inertial Focusing Position Shift and Particle Separations in Triangular Microchannels.
    Kim JA; Lee JR; Je TJ; Jeon EC; Lee W
    Anal Chem; 2018 Feb; 90(3):1827-1835. PubMed ID: 29271639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal Control of Colloidal Trajectories in Inertial Microfluidics Using the Saffman Effect.
    Rühle F; Schaaf C; Stark H
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32549244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of particle inertial migration in high particle concentration suspension flow by multi-electrodes sensing and Eulerian-Lagrangian simulation in a square microchannel.
    Zhao T; Yao J; Liu K; Takei M
    Biomicrofluidics; 2016 Mar; 10(2):024120. PubMed ID: 27158288
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The motion of two cylinders in contact in channel flow.
    Sugihara-Seki M
    Biorheology; 1994; 31(1):1-10. PubMed ID: 8173038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inertial Focusing and Separation of Particles in Similar Curved Channels.
    Ying Y; Lin Y
    Sci Rep; 2019 Nov; 9(1):16575. PubMed ID: 31719582
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulations of viscoelastic particle migration in a microchannel with triangular cross-section.
    D'Avino G
    Electrophoresis; 2021 Nov; 42(21-22):2293-2302. PubMed ID: 34080213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neutrally Buoyant Particle Migration in Poiseuille Flow Driven by Pulsatile Velocity.
    Huang L; Du J; Zhu Z
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577719
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational inertial microfluidics: a review.
    Razavi Bazaz S; Mashhadian A; Ehsani A; Saha SC; Krüger T; Ebrahimi Warkiani M
    Lab Chip; 2020 Mar; 20(6):1023-1048. PubMed ID: 32067001
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.