These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3193462)

  • 1. Magnesium deficiency exacerbates and pretreatment improves outcome following traumatic brain injury in rats: 31P magnetic resonance spectroscopy and behavioral studies.
    McIntosh TK; Faden AI; Yamakami I; Vink R
    J Neurotrauma; 1988; 5(1):17-31. PubMed ID: 3193462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in cellular bioenergetic state following graded traumatic brain injury in rats: determination by phosphorus 31 magnetic resonance spectroscopy.
    Vink R; Faden AI; McIntosh TK
    J Neurotrauma; 1988; 5(4):315-30. PubMed ID: 3249310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of acute ethanol intoxication on experimental brain injury in the rat: neurobehavioral and phosphorus-31 nuclear magnetic resonance spectroscopy studies.
    Yamakami I; Vink R; Faden AI; Gennarelli TA; Lenkinski R; McIntosh TK
    J Neurosurg; 1995 May; 82(5):813-21. PubMed ID: 7714607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood glucose concentration does not affect outcome in brain trauma: A 31P MRS study.
    Vink R; Golding EM; Williams JP; McIntosh TK
    J Cereb Blood Flow Metab; 1997 Jan; 17(1):50-3. PubMed ID: 8978386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain free magnesium concentration is predictive of motor outcome following traumatic axonal brain injury in rats.
    Heath DL; Vink R
    Magnes Res; 1999 Dec; 12(4):269-77. PubMed ID: 10612084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of magnesium therapy after severe diffuse axonal brain injury in rats.
    Heath DL; Vink R
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1311-6. PubMed ID: 10027872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opiate antagonist nalmefene improves intracellular free Mg2+, bioenergetic state, and neurologic outcome following traumatic brain injury in rats.
    Vink R; McIntosh TK; Rhomhanyi R; Faden AI
    J Neurosci; 1990 Nov; 10(11):3524-30. PubMed ID: 2230942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment with the thyrotropin-releasing hormone analog CG3703 restores magnesium homeostasis following traumatic brain injury in rats.
    Vink R; McIntosh TK; Faden AI
    Brain Res; 1988 Sep; 460(1):184-8. PubMed ID: 3146405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estrogen improves biochemical and neurologic outcome following traumatic brain injury in male rats, but not in females.
    Emerson CS; Headrick JP; Vink R
    Brain Res; 1993 Apr; 608(1):95-100. PubMed ID: 8495351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subdural hematoma following traumatic brain injury causes a secondary decline in brain free magnesium concentration.
    Heath DL; Vink R
    J Neurotrauma; 2001 Apr; 18(4):465-9. PubMed ID: 11336446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of competitive vs noncompetitive blockade of the NMDA channel following traumatic brain injury.
    Golding EM; Vink R
    Mol Chem Neuropathol; 1995; 24(2-3):137-50. PubMed ID: 7632318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. kappa-Opioid antagonist improves cellular bioenergetics and recovery after traumatic brain injury.
    Vink R; Portoghese PS; Faden AI
    Am J Physiol; 1991 Dec; 261(6 Pt 2):R1527-32. PubMed ID: 1661103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute cytoskeletal alterations and cell death induced by experimental brain injury are attenuated by magnesium treatment and exacerbated by magnesium deficiency.
    Saatman KE; Bareyre FM; Grady MS; McIntosh TK
    J Neuropathol Exp Neurol; 2001 Feb; 60(2):183-94. PubMed ID: 11273006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 31P NMR characterization of graded traumatic brain injury in rats.
    Vink R; McIntosh TK; Yamakami I; Faden AI
    Magn Reson Med; 1988 Jan; 6(1):37-48. PubMed ID: 3352504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact acceleration-induced severe diffuse axonal injury in rats: characterization of phosphate metabolism and neurologic outcome.
    Heath DL; Vink R
    J Neurotrauma; 1995 Dec; 12(6):1027-34. PubMed ID: 8742131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of MgSO4 and MgCl2 in closed head injury: a comparative phosphorus NMR study.
    Heath DL; Vink R
    J Neurotrauma; 1998 Mar; 15(3):183-9. PubMed ID: 9528918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of traumatic brain injury on cerebral high-energy phosphates and pH: a 31P magnetic resonance spectroscopy study.
    Vink R; McIntosh TK; Weiner MW; Faden AI
    J Cereb Blood Flow Metab; 1987 Oct; 7(5):563-71. PubMed ID: 3654796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decline in intracellular free Mg2+ is associated with irreversible tissue injury after brain trauma.
    Vink R; McIntosh TK; Demediuk P; Weiner MW; Faden AI
    J Biol Chem; 1988 Jan; 263(2):757-61. PubMed ID: 3335524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of phospholipase C with neomycin improves metabolic and neurologic outcome following traumatic brain injury.
    Golding EM; Vink R
    Brain Res; 1994 Dec; 668(1-2):46-53. PubMed ID: 7704617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of adenosine levels from bioenergetic state in experimental brain trauma: potential role in secondary injury.
    Headrick JP; Bendall MR; Faden AI; Vink R
    J Cereb Blood Flow Metab; 1994 Sep; 14(5):853-61. PubMed ID: 8063880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.