These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 31934718)
1. The antifungal peptide CGA-N12 inhibits cell wall synthesis of Candida tropicalis by interacting with KRE9. Li R; Liu Z; Dong W; Zhang L; Zhang B; Li D; Fu C Biochem J; 2020 Feb; 477(3):747-762. PubMed ID: 31934718 [TBL] [Abstract][Full Text] [Related]
2. Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Li R; Wu J; He F; Xu Q; Yin K; Li S; Li W; Wei A; Zhang L; Zhang XH; Zhang B Bioorg Chem; 2023 Mar; 132():106355. PubMed ID: 36669359 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial peptide CGA-N12 decreases the Candida tropicalis mitochondrial membrane potential via mitochondrial permeability transition pore. Li R; Zhao J; Huang L; Yi Y; Li A; Li D; Tao M; Liu Y Biosci Rep; 2020 May; 40(5):. PubMed ID: 32368781 [TBL] [Abstract][Full Text] [Related]
4. Effects of CGA-N12 on the membrane structure of Candida tropicalis cells. Li R; Shi W; Zhang R; Huang L; Yi Y; Li A; Jing H; Tao M; Zhang M; Pei N Biochem J; 2020 May; 477(10):1813-1825. PubMed ID: 32348458 [TBL] [Abstract][Full Text] [Related]
5. CGA-N12, a peptide derived from chromogranin A, promotes apoptosis of Li R; Zhang R; Yang Y; Wang X; Yi Y; Fan P; Liu Z; Chen C; Chang J Biochem J; 2018 Apr; 475(7):1385-1396. PubMed ID: 29559502 [TBL] [Abstract][Full Text] [Related]
6. Internalization and membrane activity of the antimicrobial peptide CGA-N12. Li R; Tao M; Li S; Wang X; Yang Y; Mo L; Zhang K; Wei A; Huang L Biochem J; 2021 May; 478(10):1907-1919. PubMed ID: 33955460 [TBL] [Abstract][Full Text] [Related]
7. The chromogranin A-derived antifungal peptide CGA-N9 induces apoptosis in Candida tropicalis. Li R; Chen C; Zhang B; Jing H; Wang Z; Wu C; Hao P; Kuang Y; Yang M Biochem J; 2019 Oct; 476(20):3069-3080. PubMed ID: 31652303 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Li X; Hu Q; Lin Q; Luo J; Xu J; Chen L; Xu L; Lin X Bioengineered; 2022 Feb; 13(2):2513-2524. PubMed ID: 35034584 [TBL] [Abstract][Full Text] [Related]
9. CGA-N9, an antimicrobial peptide derived from chromogranin A: direct cell penetration of and endocytosis by Li R; Chen C; Zhu S; Wang X; Yang Y; Shi W; Chen S; Wang C; Yan L; Shi J Biochem J; 2019 Feb; 476(3):483-497. PubMed ID: 30610128 [TBL] [Abstract][Full Text] [Related]
10. Expression of chromogranin A-derived antifungal peptide CGA-N12 in Li X; Fan Y; Lin Q; Luo J; Huang Y; Bao Y; Xu L Bioengineered; 2020 Dec; 11(1):318-327. PubMed ID: 32163000 [TBL] [Abstract][Full Text] [Related]
11. Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46. Li RF; Lu ZF; Sun YN; Chen SH; Yi YJ; Zhang HR; Yang SY; Yu GH; Huang L; Li CN Interdiscip Sci; 2016 Sep; 8(3):319-26. PubMed ID: 27165480 [TBL] [Abstract][Full Text] [Related]
12. Candida tropicalis oligopeptide transporters assist in the transmembrane transport of the antimicrobial peptide CGA-N9. Wu J; Li R; Shen Y; Zhang X; Wang X; Wang Z; Zhao Y; Huang L; Zhang L; Zhang B Biochem Biophys Res Commun; 2023 Mar; 649():101-109. PubMed ID: 36764112 [TBL] [Abstract][Full Text] [Related]
13. Antifungal activity of spider venom-derived peptide lycosin-I against Candida tropicalis. Tan L; Bai L; Wang L; He L; Li G; Du W; Shen T; Xiang Z; Wu J; Liu Z; Hu M Microbiol Res; 2018 Nov; 216():120-128. PubMed ID: 30269852 [TBL] [Abstract][Full Text] [Related]
14. DS6: anticandidal, antibiofilm peptide against Candida tropicalis and exhibit synergy with commercial drug. Singh K; Shekhar S; Yadav Y; Xess I; Dey S J Pept Sci; 2017 Mar; 23(3):228-235. PubMed ID: 28120548 [TBL] [Abstract][Full Text] [Related]
15. Antifungal mechanism of [RuIII(NH3)4catechol]+ complex on fluconazole-resistant Candida tropicalis. Gomes-Junior RA; da Silva RS; de Lima RG; Vannier-Santos MA FEMS Microbiol Lett; 2017 May; 364(9):. PubMed ID: 28402525 [TBL] [Abstract][Full Text] [Related]
16. Two squalene synthase inhibitors, E5700 and ER-119884, interfere with cellular proliferation and induce ultrastructural and lipid profile alterations in a Candida tropicalis strain resistant to fluconazole, itraconazole, and amphotericin B. Ishida K; Visbal G; Rodrigues JC; Urbina JA; de Souza W; Rozental S J Infect Chemother; 2011 Aug; 17(4):563-70. PubMed ID: 21264486 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the antifungal activity of micafungin and amphotericin B against Candida tropicalis biofilms. Marcos-Zambrano LJ; Escribano P; Bouza E; Guinea J J Antimicrob Chemother; 2016 Sep; 71(9):2498-501. PubMed ID: 27147303 [TBL] [Abstract][Full Text] [Related]
18. ClCPI, a cysteine protease inhibitor purified from Cassia leiandra seeds has antifungal activity against Candida tropicalis by inducing disruption of the cell surface. Melo IRS; Dias LP; Araújo NMS; Vasconcelos IM; Martins TF; de Morais GA; Gonçalves JFC; Nagano CS; Carneiro RF; Oliveira JTA Int J Biol Macromol; 2019 Jul; 133():1115-1124. PubMed ID: 31034905 [TBL] [Abstract][Full Text] [Related]
19. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Sahal G; Woerdenbag HJ; Hinrichs WLJ; Visser A; Tepper PG; Quax WJ; van der Mei HC; Bilkay IS J Ethnopharmacol; 2020 Jan; 246():112188. PubMed ID: 31470085 [TBL] [Abstract][Full Text] [Related]
20. The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of Oliveira JS; Pereira VS; Castelo-Branco DSCM; Cordeiro RA; Sidrim JJC; Brilhante RSN; Rocha MFG Can J Microbiol; 2020 Jun; 66(6):377-388. PubMed ID: 32319304 [No Abstract] [Full Text] [Related] [Next] [New Search]