These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31934747)

  • 1. Quasi-One-Dimensional Generator-Collector Electrochemistry in Nanochannels.
    Kostiuchenko ZA; Lemay SG
    Anal Chem; 2020 Feb; 92(3):2847-2852. PubMed ID: 31934747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancing from Rules of Thumb: Quantifying the Effects of Small Density Changes in Mass Transport to Electrodes. Understanding Natural Convection.
    Ngamchuea K; Eloul S; Tschulik K; Compton RG
    Anal Chem; 2015 Jul; 87(14):7226-34. PubMed ID: 26067985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolysis in nanochannels for in situ reagent generation in confined geometries.
    Contento NM; Branagan SP; Bohn PW
    Lab Chip; 2011 Nov; 11(21):3634-41. PubMed ID: 21912801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave-enhanced electroanalytical processes: generator-collector voltammetry at paired gold electrode junctions.
    Rassaei L; French RW; Compton RG; Marken F
    Analyst; 2009 May; 134(5):887-92. PubMed ID: 19381380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon ring-disk ultramicroelectrodes.
    Zhao G; Giolando DM; Kirchhoff JR
    Anal Chem; 1995 Apr; 67(8):1491-5. PubMed ID: 7741219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry in Micro- and Nanochannels Controlled by Streaming Potentials.
    Kostiuchenko ZA; Cui JZ; Lemay SG
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2656-2663. PubMed ID: 32030113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport in graphene nanofluidic channels.
    Xie Q; Xin F; Park HG; Duan C
    Nanoscale; 2016 Dec; 8(47):19527-19535. PubMed ID: 27878192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniaturized electrochemical flow cells.
    Sahlin E; ter Halle A; Schaefer K; Horn J; Then M; Weber SG
    Anal Chem; 2003 Feb; 75(4):1031-6. PubMed ID: 12622401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanogap-Based Electrochemical Measurements at Double-Carbon-Fiber Ultramicroelectrodes.
    Pathirathna P; Balla RJ; Amemiya S
    Anal Chem; 2018 Oct; 90(20):11746-11750. PubMed ID: 30251536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
    Tian H; Zhang L; Wang M
    J Colloid Interface Sci; 2015 Aug; 452():78-88. PubMed ID: 25932967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic amperometric fluctuations as a probe for dynamic adsorption in nanofluidic electrochemical systems.
    Singh PS; Chan HS; Kang S; Lemay SG
    J Am Chem Soc; 2011 Nov; 133(45):18289-95. PubMed ID: 21957965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current response for a single redox moiety trapped in a closed generator-collector system: the role of capacitive coupling.
    Feldberg SW; Edwards MA
    Anal Chem; 2015 Apr; 87(7):3778-83. PubMed ID: 25738594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control.
    Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM
    Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sculpturing wafer-scale nanofluidic devices for DNA single molecule analysis.
    Esmek FM; Bayat P; PĂ©rez-Willard F; Volkenandt T; Blick RH; Fernandez-Cuesta I
    Nanoscale; 2019 Jul; 11(28):13620-13631. PubMed ID: 31290915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guidelines for optimizing the architecture of battery insertion electrodes based on the concept of wiring lengths.
    Usiskin RE; Maier J
    Phys Chem Chem Phys; 2018 Jun; 20(24):16449-16462. PubMed ID: 29876558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox-Driven Reversible Gating of Solid-State Nanochannels.
    Laucirica G; Marmisollé WA; Toimil-Molares ME; Trautmann C; Azzaroni O
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30001-30009. PubMed ID: 31335118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.