These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31934751)

  • 21. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification.
    Miao L; Hou J; You G; Liu Z; Liu S; Li T; Mo Y; Guo S; Qu H
    Environ Pollut; 2019 Dec; 255(Pt 2):113300. PubMed ID: 31610513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Negative effects of microplastic exposure on growth and development of Crepidula onyx.
    Lo HKA; Chan KYK
    Environ Pollut; 2018 Feb; 233():588-595. PubMed ID: 29107898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus.
    Lee KW; Shim WJ; Kwon OY; Kang JH
    Environ Sci Technol; 2013 Oct; 47(19):11278-83. PubMed ID: 23988225
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multigenerational effects of co-exposure to dimethylarsinic acid and polystyrene microplastics on the nematode Caenorhabditis elegans.
    Müller L; Josende ME; Soares GC; Monserrat JM; Ventura-Lima J
    Environ Sci Pollut Res Int; 2023 Aug; 30(36):85359-85372. PubMed ID: 37382819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photodegradation Elevated the Toxicity of Polystyrene Microplastics to Grouper (
    Wang X; Zheng H; Zhao J; Luo X; Wang Z; Xing B
    Environ Sci Technol; 2020 May; 54(10):6202-6212. PubMed ID: 32207945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-dependent effects of polystyrene plastic particles on the nematode Caenorhabditis elegans as related to soil physicochemical properties.
    Kim SW; Kim D; Jeong SW; An YJ
    Environ Pollut; 2020 Mar; 258():113740. PubMed ID: 31874433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms.
    Kik K; Bukowska B; Sicińska P
    Environ Pollut; 2020 Jul; 262():114297. PubMed ID: 32155552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uptake and distribution of microplastics of different particle sizes in maize (Zea mays) seedling roots.
    Li H; Chang X; Zhang J; Wang Y; Zhong R; Wang L; Wei J; Wang Y
    Chemosphere; 2023 Feb; 313():137491. PubMed ID: 36493893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single and Mixture Exposures.
    Ziajahromi S; Kumar A; Neale PA; Leusch FDL
    Environ Sci Technol; 2017 Nov; 51(22):13397-13406. PubMed ID: 29059522
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polystyrene microplastics ingestion induced behavioral effects to the cladoceran Daphnia magna.
    De Felice B; Sabatini V; Antenucci S; Gattoni G; Santo N; Bacchetta R; Ortenzi MA; Parolini M
    Chemosphere; 2019 Sep; 231():423-431. PubMed ID: 31146134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Polystyrene Microplastics of Different Sizes to Escherichia coli and Bacillus cereus.
    Yi X; Li W; Liu Y; Yang K; Wu M; Zhou H
    Bull Environ Contam Toxicol; 2021 Oct; 107(4):626-632. PubMed ID: 33864099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microplastics disrupt energy metabolism in the brackish water flea Diaphanosoma celebensis.
    Jeon MJ; Yoo JW; Lee KW; Won EJ; Lee YM
    Comp Biochem Physiol C Toxicol Pharmacol; 2023 Sep; 271():109680. PubMed ID: 37301416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repeated detection of polystyrene microbeads in the Lower Rhine River.
    Mani T; Blarer P; Storck FR; Pittroff M; Wernicke T; Burkhardt-Holm P
    Environ Pollut; 2019 Feb; 245():634-641. PubMed ID: 30476893
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The challenge in preparing particle suspensions for aquatic microplastic research.
    Eitzen L; Paul S; Braun U; Altmann K; Jekel M; Ruhl AS
    Environ Res; 2019 Jan; 168():490-495. PubMed ID: 30318109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica.
    Wang X; Liu L; Zheng H; Wang M; Fu Y; Luo X; Li F; Wang Z
    Mar Pollut Bull; 2020 Jan; 150():110660. PubMed ID: 31727317
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of polystyrene plastics on the toxicity of triphenyltin to the marine diatom Skeletonema costatum-influence of plastic particle size.
    Yi X; Wang J; Li Z; Zhang Z; Chi T; Guo M; Li W; Zhou H
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25445-25451. PubMed ID: 31264150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dark-field hyperspectral microscopy for label-free microplastics and nanoplastics detection and identification in vivo: A Caenorhabditis elegans study.
    Nigamatzyanova L; Fakhrullin R
    Environ Pollut; 2021 Feb; 271():116337. PubMed ID: 33383415
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aging of microplastics promotes their ingestion by marine zooplankton.
    Vroom RJE; Koelmans AA; Besseling E; Halsband C
    Environ Pollut; 2017 Dec; 231(Pt 1):987-996. PubMed ID: 28898955
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perturbation of calcium homeostasis and multixenobiotic resistance by nanoplastics in the ciliate Tetrahymena thermophila.
    Wu C; Guo WB; Liu YY; Yang L; Miao AJ
    J Hazard Mater; 2021 Feb; 403():123923. PubMed ID: 33264974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.