These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 31934773)

  • 1. Biomechanical Evaluation of Passive Back-Support Exoskeletons in a Precision Manual Assembly Task: "Expected" Effects on Trunk Muscle Activity, Perceived Exertion, and Task Performance.
    Madinei S; Alemi MM; Kim S; Srinivasan D; Nussbaum MA
    Hum Factors; 2020 May; 62(3):441-457. PubMed ID: 31934773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Two Passive Back-Support Exoskeletons on Muscle Activity, Energy Expenditure, and Subjective Assessments During Repetitive Lifting.
    Alemi MM; Madinei S; Kim S; Srinivasan D; Nussbaum MA
    Hum Factors; 2020 May; 62(3):458-474. PubMed ID: 32017609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical assessment of two back-support exoskeletons in symmetric and asymmetric repetitive lifting with moderate postural demands.
    Madinei S; Alemi MM; Kim S; Srinivasan D; Nussbaum MA
    Appl Ergon; 2020 Oct; 88():103156. PubMed ID: 32678776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating lumbar spine loading when using back-support exoskeletons in lifting tasks.
    Madinei S; Nussbaum MA
    J Biomech; 2023 Jan; 147():111439. PubMed ID: 36638578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of back-support exoskeleton use on trunk neuromuscular control during repetitive lifting: A dynamical systems analysis.
    Madinei S; Kim S; Srinivasan D; Nussbaum MA
    J Biomech; 2021 Jun; 123():110501. PubMed ID: 34000644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the potential for "undesired" effects of passive back-support exoskeleton use during a simulated manual assembly task: Muscle activity, posture, balance, discomfort, and usability.
    Kim S; Madinei S; Alemi MM; Srinivasan D; Nussbaum MA
    Appl Ergon; 2020 Nov; 89():103194. PubMed ID: 32854824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work.
    Bosch T; van Eck J; Knitel K; de Looze M
    Appl Ergon; 2016 May; 54():212-7. PubMed ID: 26851481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three passive arm-support exoskeletons have inconsistent effects on muscle activity, posture, and perceived exertion during diverse simulated pseudo-static overhead nutrunning tasks.
    Ojelade A; Morris W; Kim S; Kelson D; Srinivasan D; Smets M; Nussbaum MA
    Appl Ergon; 2023 Jul; 110():104015. PubMed ID: 36933418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a Passive Back Exoskeleton During a Simulated Sorting Task: Influence on Muscle Activity, Posture, and Heart Rate.
    Bär M; Luger T; Seibt R; Rieger MA; Steinhilber B
    Hum Factors; 2024 Jan; 66(1):40-55. PubMed ID: 35225011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a Passive Back-Support Exosuit on Erector Spinae and Abdominal Muscle Activity During Short-Duration, Asymmetric Trunk Posture Maintenance Tasks.
    Kang SH; Mirka GA
    Hum Factors; 2024 Jul; 66(7):1830-1843. PubMed ID: 37635094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical Consequences of Using Passive and Active Back-Support Exoskeletons during Different Manual Handling Tasks.
    Schwartz M; Desbrosses K; Theurel J; Mornieux G
    Int J Environ Res Public Health; 2023 Jul; 20(15):. PubMed ID: 37569010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of a passive back support exoskeleton on simulated patient bed bathing: results of an exploratory study.
    Maurice P; Cuny-Enault F; Ivaldi S
    Ergonomics; 2023 Jun; 66(6):859-873. PubMed ID: 36154913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perspectives of End Users on the Potential Use of Trunk Exoskeletons for People With Low-Back Pain: A Focus Group Study.
    Baltrusch SJ; Houdijk H; van Dieën JH; van Bennekom CAM; de Kruif AJTCM
    Hum Factors; 2020 May; 62(3):365-376. PubMed ID: 31914327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of a passive trunk exoskeleton on functional performance in healthy individuals.
    Baltrusch SJ; van Dieën JH; van Bennekom CAM; Houdijk H
    Appl Ergon; 2018 Oct; 72():94-106. PubMed ID: 29885731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reliability of a battery of tests for functional evaluation of trunk exoskeletons.
    Kozinc Ž; Baltrusch S; Houdijk H; Šarabon N
    Appl Ergon; 2020 Jul; 86():103117. PubMed ID: 32342882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential exoskeleton uses for reducing low back muscular activity during farm tasks.
    Thamsuwan O; Milosavljevic S; Srinivasan D; Trask C
    Am J Ind Med; 2020 Nov; 63(11):1017-1028. PubMed ID: 32926450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a passive trunk exoskeleton on metabolic costs during lifting and walking.
    Baltrusch SJ; van Dieën JH; Bruijn SM; Koopman AS; van Bennekom CAM; Houdijk H
    Ergonomics; 2019 Jul; 62(7):903-916. PubMed ID: 30929608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of exoskeleton design and precision requirements on physical demands and quality in a simulated overhead drilling task.
    Alabdulkarim S; Kim S; Nussbaum MA
    Appl Ergon; 2019 Oct; 80():136-145. PubMed ID: 31280797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of lumbar posture and tissue loading during static trunk bending.
    Alessa F; Ning X
    Hum Mov Sci; 2018 Feb; 57():59-68. PubMed ID: 29161614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work.
    Pillai MV; Van Engelhoven L; Kazerooni H
    Hum Factors; 2020 May; 62(3):489-500. PubMed ID: 32150477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.