These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 31935075)
41. Reaction of bisphenol A with synthetic and commercial MnO Shaikh N; Zhang H; Rasamani K; Artyushkova K; Ali AS; Cerrato JM Environ Sci Process Impacts; 2018 Jul; 20(7):1046-1055. PubMed ID: 29901671 [TBL] [Abstract][Full Text] [Related]
43. Removing ammonium from underground water by strengthening Mn(III) generation through electrochemical reduction. Shi X; Shi J; Ma W; Chai P; Huang T Water Environ Res; 2019 Sep; 91(9):855-864. PubMed ID: 30993761 [TBL] [Abstract][Full Text] [Related]
44. Removal of thallium by MnOx coated limestone sand filter through regeneration of KMnO Huang Y; Liu Z; Liu H; Ma C; Chen W; Huangfu X J Hazard Mater; 2024 Feb; 464():132947. PubMed ID: 37956563 [TBL] [Abstract][Full Text] [Related]
45. Insights into the precursor effect on the surface structure of γ-Al Wang X; Lu Y; Tan W; Liu A; Ji J; Wan H; Sun C; Tang C; Dong L J Colloid Interface Sci; 2019 Oct; 554():611-618. PubMed ID: 31336353 [TBL] [Abstract][Full Text] [Related]
46. Kinetic and mechanistic aspects of selenite oxidation by chlorine, bromine, monochloramine, ozone, permanganate, and hydrogen peroxide. Liu S; Salhi E; Huang W; Diao K; von Gunten U Water Res; 2019 Nov; 164():114876. PubMed ID: 31400591 [TBL] [Abstract][Full Text] [Related]
47. MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury. Xu H; Qu Z; Zong C; Huang W; Quan F; Yan N Environ Sci Technol; 2015 Jun; 49(11):6823-30. PubMed ID: 25922870 [TBL] [Abstract][Full Text] [Related]
48. Biological and physico-chemical mechanisms accelerating the acclimation of Mn-removing biofilters. McCormick NE; Earle M; Ha C; Hakes L; Evans A; Anderson L; Stoddart AK; Langille MGI; Gagnon GA Water Res; 2021 Dec; 207():117793. PubMed ID: 34715404 [TBL] [Abstract][Full Text] [Related]
49. Enhanced chlorine dioxide decay in the presence of metal oxides: relevance to drinking water distribution systems. Liu C; von Gunten U; Croué JP Environ Sci Technol; 2013 Aug; 47(15):8365-72. PubMed ID: 23796229 [TBL] [Abstract][Full Text] [Related]
50. Metal Adsorption Controls Stability of Layered Manganese Oxides. Yang P; Post JE; Wang Q; Xu W; Geiss R; McCurdy PR; Zhu M Environ Sci Technol; 2019 Jul; 53(13):7453-7462. PubMed ID: 31150220 [TBL] [Abstract][Full Text] [Related]
51. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Zhang G; Liu F; Liu H; Qu J; Liu R Environ Sci Technol; 2014 Sep; 48(17):10316-22. PubMed ID: 25093452 [TBL] [Abstract][Full Text] [Related]
52. Oxidation of Mn(III) Species by Pb(IV) Oxide as a Surrogate Oxidant in Aquatic Systems. Wang X; Wang Q; Yang P; Wang X; Zhang L; Feng X; Zhu M; Wang Z Environ Sci Technol; 2020 Nov; 54(21):14124-14133. PubMed ID: 33064452 [TBL] [Abstract][Full Text] [Related]
53. Effect of oxide formation mechanisms on lead adsorption by biogenic manganese (hydr)oxides, iron (hydr)oxides, and their mixtures. Nelson YM; Lion LW; Shuler ML; Ghiorse WC Environ Sci Technol; 2002 Feb; 36(3):421-5. PubMed ID: 11871557 [TBL] [Abstract][Full Text] [Related]
54. Manganese accumulation on pipe surface in chlorinated drinking water distribution system: Contributions of physical and chemical pathways. Zhou X; Kosaka K; Nakanishi T; Welfringer T; Itoh S Water Res; 2020 Oct; 184():116201. PubMed ID: 32726736 [TBL] [Abstract][Full Text] [Related]
55. Surface and Structural Investigation of a MnOx Birnessite-Type Water Oxidation Catalyst Formed under Photocatalytic Conditions. Deibert BJ; Zhang J; Smith PF; Chapman KW; Rangan S; Banerjee D; Tan K; Wang H; Pasquale N; Chen F; Lee KB; Dismukes GC; Chabal YJ; Li J Chemistry; 2015 Sep; 21(40):14218-28. PubMed ID: 26263021 [TBL] [Abstract][Full Text] [Related]
56. Surface Mn(II) oxidation actuated by a multicopper oxidase in a soil bacterium leads to the formation of manganese oxide minerals. Zhang Z; Zhang Z; Chen H; Liu J; Liu C; Ni H; Zhao C; Ali M; Liu F; Li L Sci Rep; 2015 Jun; 5():10895. PubMed ID: 26039669 [TBL] [Abstract][Full Text] [Related]
57. Hydroxyl-aluminum pillared bentonite enhanced Mn(II) removal by chlorine oxidation. Qian S; Shi F; Wang Z; Yu Y; Lu H; Jia Z; Ma J; Ma Y J Hazard Mater; 2024 Sep; 476():135001. PubMed ID: 38908175 [TBL] [Abstract][Full Text] [Related]
58. Oxidants-assisted sand filter to enhance the simultaneous removals of manganese, iron and ammonia from groundwater: Formation of active MnOx and involved mechanisms. Yang H; Tang X; Luo X; Li G; Liang H; Snyder S J Hazard Mater; 2021 Aug; 415():125707. PubMed ID: 34088191 [TBL] [Abstract][Full Text] [Related]
59. Microbial oxidation and reduction of manganese: consequences in groundwater and applications. Gounot AM FEMS Microbiol Rev; 1994 Aug; 14(4):339-49. PubMed ID: 7917421 [TBL] [Abstract][Full Text] [Related]
60. Oxidation kinetics of anilines by aqueous permanganate and effects of manganese products: Comparison to phenols. Pang SY; Duan JB; Zhou Y; Gao Y; Jiang J Chemosphere; 2019 Nov; 235():104-112. PubMed ID: 31255750 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]