BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31935220)

  • 1. Enhancing performance of subject-specific models via subject-independent information for SSVEP-based BCIs.
    Mehdizavareh MH; Hemati S; Soltanian-Zadeh H
    PLoS One; 2020; 15(1):e0226048. PubMed ID: 31935220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectrum-Enhanced TRCA (SE-TRCA): A novel approach for direction detection in SSVEP-based BCI.
    Mijani A; Cherloo MN; Tang H; Zhan L
    Comput Biol Med; 2023 Nov; 166():107488. PubMed ID: 37778215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a Sum of Squared Correlations Framework for Enhancing SSVEP-Based BCIs.
    Kiran Kumar GR; Ramasubba Reddy M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2044-2050. PubMed ID: 31536009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis.
    Nakanishi M; Wang Y; Chen X; Wang YT; Gao X; Jung TP
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):104-112. PubMed ID: 28436836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Training Data-Driven Canonical Correlation Analysis Algorithm for Designing Spatial Filters to Enhance Performance of SSVEP-Based BCIs.
    Wei Q; Zhu S; Wang Y; Gao X; Guo H; Wu X
    Int J Neural Syst; 2020 May; 30(5):2050020. PubMed ID: 32380925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs.
    Jiang J; Yin E; Wang C; Xu M; Ming D
    J Neural Eng; 2018 Aug; 15(4):046025. PubMed ID: 29774867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing user-dependent and user-independent training of CNN for SSVEP BCI.
    Ravi A; Beni NH; Manuel J; Jiang N
    J Neural Eng; 2020 Apr; 17(2):026028. PubMed ID: 31923910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Dynamic Window Recognition Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Spatio-Temporal Equalizer.
    Yang C; Han X; Wang Y; Saab R; Gao S; Gao X
    Int J Neural Syst; 2018 Dec; 28(10):1850028. PubMed ID: 30105920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials.
    Nakanishi M; Wang Y; Wang YT; Jung TP
    PLoS One; 2015; 10(10):e0140703. PubMed ID: 26479067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces.
    Cao L; Ju Z; Li J; Jian R; Jiang C
    J Neurosci Methods; 2015 Sep; 253():10-7. PubMed ID: 26014663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated Component Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface.
    Zhang Y; Guo D; Li F; Yin E; Zhang Y; Li P; Zhao Q; Tanaka T; Yao D; Xu P
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):948-956. PubMed ID: 29752229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information.
    Yuan P; Chen X; Wang Y; Gao X; Gao S
    J Neural Eng; 2015 Aug; 12(4):046006. PubMed ID: 26028259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs.
    Wong CM; Wang Z; Wang B; Lao KF; Rosa A; Xu P; Jung TP; Chen CLP; Wan F
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2123-2135. PubMed ID: 32841119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel training-free recognition method for SSVEP-based BCIs using dynamic window strategy.
    Chen Y; Yang C; Chen X; Wang Y; Gao X
    J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 32380480
    [No Abstract]   [Full Text] [Related]  

  • 17. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA.
    Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T
    J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channel Projection-Based CCA Target Identification Method for an SSVEP-Based BCI System of Quadrotor Helicopter Control.
    Gao Q; Zhang Y; Wang Z; Dong E; Song X; Song Y
    Comput Intell Neurosci; 2019; 2019():2361282. PubMed ID: 31933620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface.
    Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.