These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 31935377)
1. Implications of variability in cell membrane permeability for design of methods to remove glycerol from frozen-thawed erythrocytes. Lahmann JM; Sanchez CC; Benson JD; Acker JP; Higgins AZ Cryobiology; 2020 Feb; 92():168-179. PubMed ID: 31935377 [TBL] [Abstract][Full Text] [Related]
2. Concentration dependence of the cell membrane permeability to cryoprotectant and water and implications for design of methods for post-thaw washing of human erythrocytes. Lahmann JM; Benson JD; Higgins AZ Cryobiology; 2018 Feb; 80():1-11. PubMed ID: 29223592 [TBL] [Abstract][Full Text] [Related]
3. Rapid removal of glycerol from frozen-thawed red blood cells. Lusianti RE; Benson JD; Acker JP; Higgins AZ Biotechnol Prog; 2013; 29(3):609-20. PubMed ID: 23436802 [TBL] [Abstract][Full Text] [Related]
4. Osmotic tolerance limits of red blood cells from umbilical cord blood. Zhurova M; Lusianti RE; Higgins AZ; Acker JP Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371 [TBL] [Abstract][Full Text] [Related]
5. Cryopreservation of red blood cells. Lagerberg JW Methods Mol Biol; 2015; 1257():353-67. PubMed ID: 25428017 [TBL] [Abstract][Full Text] [Related]
6. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Briard JG; Poisson JS; Turner TR; Capicciotti CJ; Acker JP; Ben RN Sci Rep; 2016 Mar; 6():23619. PubMed ID: 27021850 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of two distinct cryoprotectants for cryopreservation of human red blood cell concentrates. Korsak J; Goller A; Rzeszotarska A; Pleskacz K Cryo Letters; 2014; 35(1):15-21. PubMed ID: 24872153 [TBL] [Abstract][Full Text] [Related]
8. Modification of deglycerolization procedure improves processing and post-thaw quality of cryopreserved sickle trait red cell concentrates. Phan C; Kurach J; Foxcroft M; Xu D; Olafson C; Clarke G; Acker JP Cryobiology; 2024 Jun; 115():104903. PubMed ID: 38734363 [TBL] [Abstract][Full Text] [Related]
9. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Stefanic M; Ward K; Tawfik H; Seemann R; Baulin V; Guo Y; Fleury JB; Drouet C Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014 [TBL] [Abstract][Full Text] [Related]
10. Effect of cryopreservation on a rare McLeod donor red blood cell concentrate. Turner TR; Clarke G; Denomme GA; Skeate R; Acker JP Immunohematology; 2021 Jun; 37(2):78-83. PubMed ID: 34170642 [TBL] [Abstract][Full Text] [Related]
11. Osmotic parameters of red blood cells from umbilical cord blood. Zhurova M; McGann LE; Acker JP Cryobiology; 2014 Jun; 68(3):379-88. PubMed ID: 24727610 [TBL] [Abstract][Full Text] [Related]
12. Posttransfusion survival (24-hour) and hemolysis of previously frozen, deglycerolized RBCs after storage at 4 degrees C for up to 14 days in sodium chloride alone or sodium chloride supplemented with additive solutions. Valeri CR; Pivacek LE; Cassidy GP; Ragno G Transfusion; 2000 Nov; 40(11):1337-40. PubMed ID: 11099661 [TBL] [Abstract][Full Text] [Related]
13. Stability after thawing of RBCs frozen with the high- and low-glycerol method. Lelkens CC; Noorman F; Koning JG; Truijens-de Lange R; Stekkinger PS; Bakker JC; Lagerberg JW; Brand A; Verhoeven AJ Transfusion; 2003 Feb; 43(2):157-64. PubMed ID: 12559010 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Stoll C; Holovati JL; Acker JP; Wolkers WF Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294 [TBL] [Abstract][Full Text] [Related]
16. Cryopreserved red blood cells maintain allosteric control of oxygen binding when utilizing trehalose as a cryoprotectant. Elder CA; Smith JS; Almosawi M; Mills E; Janis BR; Kopechek JA; Wolkers WF; Menze MA Cryobiology; 2024 Mar; 114():104793. PubMed ID: 37979827 [TBL] [Abstract][Full Text] [Related]
17. Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Pallotta V; D'Amici GM; D'Alessandro A; Rossetti R; Zolla L Blood Cells Mol Dis; 2012 Apr; 48(4):226-32. PubMed ID: 22424604 [TBL] [Abstract][Full Text] [Related]
18. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Holovati JL; Wong KA; Webster JM; Acker JP Transfusion; 2008 Aug; 48(8):1658-68. PubMed ID: 18482179 [TBL] [Abstract][Full Text] [Related]
19. Exploring the Possibility of Cryopreservation of Feline and Canine Erythrocytes by Rapid Freezing with Penetrating and Non-Penetrating Cryoprotectants. Pogozhykh D; Pakhomova Y; Pervushina O; Hofmann N; Glasmacher B; Zhegunov G PLoS One; 2017; 12(1):e0169689. PubMed ID: 28072844 [TBL] [Abstract][Full Text] [Related]
20. Natural cryoprotectants combinations of l-proline and trehalose for red blood cells cryopreservation. Dou M; Lu C; Sun Z; Rao W Cryobiology; 2019 Dec; 91():23-29. PubMed ID: 31693877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]