These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31935704)

  • 1. CFD based parameter tuning for motion control of robotic fish.
    Tian R; Li L; Wang W; Chang X; Ravi S; Xie G
    Bioinspir Biomim; 2020 Feb; 15(2):026008. PubMed ID: 31935704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bottom-level motion control for robotic fish to swim in groups: modeling and experiments.
    Li L; Liu A; Wang W; Ravi S; Fu R; Yu J; Xie G
    Bioinspir Biomim; 2019 May; 14(4):046001. PubMed ID: 30875698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
    Liao P; Zhang S; Sun D
    Bioinspir Biomim; 2018 Mar; 13(3):036007. PubMed ID: 29359705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a biomimetic robotic fish and its control algorithm.
    Yu J; Tan M; Wang S; Chen E
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1798-810. PubMed ID: 15462446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive robotic models of propulsion by the bodies and caudal fins of fish.
    Lauder GV; Flammang B; Alben S
    Integr Comp Biol; 2012 Nov; 52(5):576-87. PubMed ID: 22740513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFD-based multi-objective controller optimization for soft robotic fish with muscle-like actuation.
    Hess A; Tan X; Gao T
    Bioinspir Biomim; 2020 Mar; 15(3):035004. PubMed ID: 31958782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Undulatory Swimming Performance and Body Stiffness Modulation in a Soft Robotic Fish-Inspired Physical Model.
    Jusufi A; Vogt DM; Wood RJ; Lauder GV
    Soft Robot; 2017 Sep; 4(3):202-210. PubMed ID: 29182079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H; Curet OM
    Bioinspir Biomim; 2017 Jun; 12(3):036015. PubMed ID: 28481218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model.
    Wolf Z; Jusufi A; Vogt DM; Lauder GV
    Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed.
    Ren Z; Yang X; Wang T; Wen L
    Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics method.
    Doi K; Takagi T; Mitsunaga Y; Torisawa S
    PLoS One; 2021; 16(5):e0250837. PubMed ID: 33939762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of a biologically inspired robotic fish driven by compliant parts.
    El Daou H; Salumäe T; Chambers LD; Megill WM; Kruusmaa M
    Bioinspir Biomim; 2014 Mar; 9(1):016010. PubMed ID: 24451164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platform development and gliding optimization of a robotic flying fish with morphing pectoral fins.
    Chen D; Wu Z; Dong H; Meng Y; Yu J
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37075757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.
    Wen L; Wang TM; Wu GH; Liang JH
    Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.