These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 31935803)

  • 1. Convenient Real-Time Monitoring of the Contamination of Surface Ion Trap.
    Zhang X; Hou Y; Chen T; Wu W; Chen P
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31935803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling and suppression of anomalous heating in ion traps.
    Deslauriers L; Olmschenk S; Stick D; Hensinger WK; Sterk J; Monroe C
    Phys Rev Lett; 2006 Sep; 97(10):103007. PubMed ID: 17025815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motional heating in a graphene-coated ion trap.
    Eltony AM; Park HG; Wang SX; Kong J; Chuang IL
    Nano Lett; 2014 Oct; 14(10):5712-6. PubMed ID: 25162791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guidelines for Designing Surface Ion Traps Using the Boundary Element Method.
    Hong S; Lee M; Cheon H; Kim T; Cho DI
    Sensors (Basel); 2016 Apr; 16(5):. PubMed ID: 27136559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring Anomalous Heating in a Planar Ion Trap with Variable Ion-Surface Separation.
    Boldin IA; Kraft A; Wunderlich C
    Phys Rev Lett; 2018 Jan; 120(2):023201. PubMed ID: 29376708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment.
    Hite DA; Colombe Y; Wilson AC; Brown KR; Warring U; Jördens R; Jost JD; McKay KS; Pappas DP; Leibfried D; Wineland DJ
    Phys Rev Lett; 2012 Sep; 109(10):103001. PubMed ID: 23005284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of heating rates in cryogenic surface-electrode ion traps.
    Labaziewicz J; Ge Y; Antohi P; Leibrandt D; Brown KR; Chuang IL
    Phys Rev Lett; 2008 Jan; 100(1):013001. PubMed ID: 18232755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip.
    Sterling RC; Rattanasonti H; Weidt S; Lake K; Srinivasan P; Webster SC; Kraft M; Hensinger WK
    Nat Commun; 2014 Apr; 5():3637. PubMed ID: 24704758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated surface-electrode ion trap for scalable quantum information processing.
    Seidelin S; Chiaverini J; Reichle R; Bollinger JJ; Leibfried D; Britton J; Wesenberg JH; Blakestad RB; Epstein RJ; Hume DB; Itano WM; Jost JD; Langer C; Ozeri R; Shiga N; Wineland DJ
    Phys Rev Lett; 2006 Jun; 96(25):253003. PubMed ID: 16907302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of interface trap densities and quantum capacitance in carbon nanotube network thin-film transistors.
    Yoon J; Choi B; Choi S; Lee J; Lee J; Jeon M; Lee Y; Han J; Lee J; Kim DM; Kim DH; Kim S; Choi SJ
    Nanotechnology; 2016 Jul; 27(29):295704. PubMed ID: 27285674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-poissonian loading of single atoms in a microscopic dipole trap.
    Schlosser N; Reymond G; Protsenko I; Grangier P
    Nature; 2001 Jun; 411(6841):1024-7. PubMed ID: 11429597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface trap with dc-tunable ion-electrode distance.
    An D; Matthiesen C; Abdelrahman A; Berlin-Udi M; Gorman D; Möller S; Urban E; Häffner H
    Rev Sci Instrum; 2018 Sep; 89(9):093102. PubMed ID: 30278688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissipation-assisted quantum information processing with trapped ions.
    Bermudez A; Schaetz T; Plenio MB
    Phys Rev Lett; 2013 Mar; 110(11):110502. PubMed ID: 25166518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ trap capacitance measurement and ion-trapping detection scheme for a Penning ion trap facility.
    Reza A; Banerjee K; Das P; Ray K; Bandyopadhyay S; Dam B
    Rev Sci Instrum; 2017 Mar; 88(3):034705. PubMed ID: 28372439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-vacuum active electronics for microfabricated ion traps.
    Guise ND; Fallek SD; Hayden H; Pai CS; Volin C; Brown KR; Merrill JT; Harter AW; Amini JM; Lust LM; Muldoon K; Carlson D; Budach J
    Rev Sci Instrum; 2014 Jun; 85(6):063101. PubMed ID: 24985793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How far can ion trap miniaturization go? Parameter scaling and space-charge limits for very small cylindrical ion traps.
    Tian Y; Higgs J; Li A; Barney B; Austin DE
    J Mass Spectrom; 2014 Mar; 49(3):233-40. PubMed ID: 24619549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps.
    Hong S; Lee M; Kwon YD; Cho DD; Kim T
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, microfabrication, and analysis of micrometer-sized cylindrical ion trap arrays.
    Cruz D; Chang JP; Fico M; Guymon AJ; Austin DE; Blain MG
    Rev Sci Instrum; 2007 Jan; 78(1):015107. PubMed ID: 17503946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorbate interactions on the GaN(0001) surface and their effect on diffusion barriers and growth morphology.
    Chugh M; Ranganathan M
    Phys Chem Chem Phys; 2017 Jan; 19(3):2111-2123. PubMed ID: 28045144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryogenically cooled octupole ion trap for spectroscopy of biomolecular ions.
    Boyarkin OV; Kopysov V
    Rev Sci Instrum; 2014 Mar; 85(3):033105. PubMed ID: 24689562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.