These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31935910)

  • 1. Machine Learning Methodology in a System Applying the Adaptive Strategy for Teaching Human Motions.
    Wójcik K; Piekarczyk M
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HUSP: A Smart Haptic Probe for Reliable Training in Musculoskeletal Evaluation Using Motion Sensors.
    Moreno V; Curto B; Garcia-Esteban JA; Hernández Zaballos F; Alonso Hernández P; Serrano FJ
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30597949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Object Dynamics Using Hand Worn Motion and Force Sensors.
    Kortier HG; Schepers HM; Veltink PH
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27898040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Digitalized Gyroscope System Based on a Modified Adaptive Control Method.
    Xia D; Hu Y; Ni P
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 26959019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Artificial-Intelligence-Driven Predictive Model for Surface Defect Detections in Medical MEMS.
    Amini A; Kanfoud J; Gan TH
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of vibrotactile feedback on human learning of arm motions.
    Bark K; Hyman E; Tan F; Cha E; Jax SA; Buxbaum LJ; Kuchenbecker KJ
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):51-63. PubMed ID: 25486644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic algorithm for the design of electro-mechanical sigma delta modulator MEMS sensors.
    Wilcock R; Kraft M
    Sensors (Basel); 2011; 11(10):9217-32. PubMed ID: 22163691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mini sensing chip for point-of-care acute myocardial infarction diagnosis utilizing micro-electro-mechanical system and nano-technology.
    Wang J; Hong B; Kai J; Han J; Zou Z; Ahn CH; Kang KA
    Adv Exp Med Biol; 2009; 645():101-7. PubMed ID: 19227457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.
    Go T; Byeon H; Lee SJ
    Biosens Bioelectron; 2018 Apr; 103():12-18. PubMed ID: 29277009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation into machine learning algorithms as applied to motor cortex signals for classification of movement stages.
    Hollingshead RL; Putrino D; Ghosh S; Tan T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1290-3. PubMed ID: 25570202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.
    Kos A; Tomažič S; Umek A
    Sensors (Basel); 2016 Feb; 16(3):301. PubMed ID: 26927125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluidics-based impact sensor.
    Takahashi D; Hara K; Okano T; Suzuki H
    PLoS One; 2018; 13(4):e0195741. PubMed ID: 29634750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance.
    Cust EE; Sweeting AJ; Ball K; Robertson S
    J Sports Sci; 2019 Mar; 37(5):568-600. PubMed ID: 30307362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects.
    Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locating Ultrasonic Signals Employing MEMS-On-Fiber Sensors.
    Si W; Fu C; Li H; Lv J; Xiong C; Yuan P; Yu Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31454907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive Data Transmission Algorithm for the System of Inertial Sensors for Hand Movement Acquisition.
    Pielka M; Janik P; Janik MA; Wróbel Z
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data-driven application of MEMS-based accelerometers for leak detection in water distribution networks.
    Tariq S; Bakhtawar B; Zayed T
    Sci Total Environ; 2022 Feb; 809():151110. PubMed ID: 34688733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.