These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 31936350)

  • 1. Targeting Glucose Transporters for Breast Cancer Therapy: The Effect of Natural and Synthetic Compounds.
    Barbosa AM; Martel F
    Cancers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism.
    Keating E; Martel F
    Front Nutr; 2018; 5():25. PubMed ID: 29713632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism.
    Shriwas P; Roberts D; Li Y; Wang L; Qian Y; Bergmeier S; Hines J; Adhicary S; Nielsen C; Chen X
    Cancer Metab; 2021 Mar; 9(1):14. PubMed ID: 33771231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of polyphenols on glucose and lactate transport by breast cancer cells.
    Martel F; Guedes M; Keating E
    Breast Cancer Res Treat; 2016 May; 157(1):1-11. PubMed ID: 27097608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer.
    Tilekar K; Upadhyay N; Iancu CV; Pokrovsky V; Choe JY; Ramaa CS
    Biochim Biophys Acta Rev Cancer; 2020 Dec; 1874(2):188457. PubMed ID: 33096154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Phenotype Intricacies on Altered Glucose Metabolism of Breast Cancer Cells upon Glut-1 Inhibition and Mimic Hypoxia In Vitro.
    Littleflower AB; Antony GR; Parambil ST; Subhadradevi L
    Appl Biochem Biotechnol; 2023 Oct; 195(10):5838-5854. PubMed ID: 36708494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Synthesis, and Evaluation of GLUT Inhibitors.
    Granchi C; Tuccinardi T; Minutolo F
    Methods Mol Biol; 2018; 1713():93-108. PubMed ID: 29218520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of metformin on estrogen and progesterone receptor-positive (MCF-7) and triple-negative (MDA-MB-231) breast cancer cells.
    Amaral I; Silva C; Correia-Branco A; Martel F
    Biomed Pharmacother; 2018 Jun; 102():94-101. PubMed ID: 29550639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose Metabolism and Glucose Transporters in Breast Cancer.
    Shin E; Koo JS
    Front Cell Dev Biol; 2021; 9():728759. PubMed ID: 34552932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy.
    Zambrano A; Molt M; Uribe E; Salas M
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31324056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas?
    Gonzalez-Menendez P; Hevia D; Mayo JC; Sainz RM
    Int J Cancer; 2018 Jun; 142(12):2414-2424. PubMed ID: 29159872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment.
    Barron CC; Bilan PJ; Tsakiridis T; Tsiani E
    Metabolism; 2016 Feb; 65(2):124-39. PubMed ID: 26773935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer.
    Macheda ML; Rogers S; Best JD
    J Cell Physiol; 2005 Mar; 202(3):654-62. PubMed ID: 15389572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study.
    Brown RS; Wahl RL
    Cancer; 1993 Nov; 72(10):2979-85. PubMed ID: 8221565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation.
    Kraus D; Reckenbeil J; Veit N; Kuerpig S; Meisenheimer M; Beier I; Stark H; Winter J; Probstmeier R
    Cell Oncol (Dordr); 2018 Oct; 41(5):485-494. PubMed ID: 29949049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Key Transporters in Tumor Glycolysis as a Novel Anticancer Strategy.
    Shi Y; Liu S; Ahmad S; Gao Q
    Curr Top Med Chem; 2018; 18(6):454-466. PubMed ID: 29788889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond.
    Ganapathy V; Thangaraju M; Prasad PD
    Pharmacol Ther; 2009 Jan; 121(1):29-40. PubMed ID: 18992769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose transporters regulation on ischemic brain: possible role as therapeutic target.
    Espinoza-Rojo M; Iturralde-Rodríguez KI; Chánez-Cárdenas ME; Ruiz-Tachiquín ME; Aguilera P
    Cent Nerv Syst Agents Med Chem; 2010 Dec; 10(4):317-25. PubMed ID: 20868355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose Addiction in Cancer Therapy: Advances and Drawbacks.
    Granja S; Pinheiro C; Reis RM; Martinho O; Baltazar F
    Curr Drug Metab; 2015; 16(3):221-42. PubMed ID: 26504932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics.
    Airley RE; Mobasheri A
    Chemotherapy; 2007; 53(4):233-56. PubMed ID: 17595539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.