These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31936376)

  • 41. Residual lignin in cellulose nanofibrils enhances the interfacial stabilization of Pickering emulsions.
    Guo S; Li X; Kuang Y; Liao J; Liu K; Li J; Mo L; He S; Zhu W; Song J; Song T; Rojas OJ
    Carbohydr Polym; 2021 Feb; 253():117223. PubMed ID: 33278985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of green synthesised silver nanoparticles (ST06-AgNPs) using curcumin derivative (ST06) on human cervical cancer cells (HeLa) in vitro and EAC tumor bearing mice models.
    Murugesan K; Koroth J; Srinivasan PP; Singh A; Mukundan S; Karki SS; Choudhary B; Gupta CM
    Int J Nanomedicine; 2019; 14():5257-5270. PubMed ID: 31409988
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tailored production of lignin-containing cellulose nanofibrils from sugarcane bagasse pretreated by acid-catalyzed alcohol solutions.
    Liu Y; Li W; Li K; Annamalai PK; Pratt S; Hassanpour M; Lu H; Zhang Z
    Carbohydr Polym; 2022 Sep; 291():119602. PubMed ID: 35698405
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy.
    Chen X; Lin H; Xu T; Lai K; Han X; Lin M
    Food Chem; 2020 Jun; 315():126276. PubMed ID: 32014669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hybrid Silver-Containing Materials Based on Various Forms of Bacterial Cellulose: Synthesis, Structure, and Biological Activity.
    Vasil'kov A; Butenko I; Naumkin A; Voronova A; Golub A; Buzin M; Shtykova E; Volkov V; Sadykova V
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108827
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials.
    Bian H; Gao Y; Luo J; Jiao L; Wu W; Fang G; Dai H
    Waste Manag; 2019 May; 91():1-8. PubMed ID: 31203931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiochemical properties of Trichoderma longibrachiatum DSMZ 16517-synthesized silver nanoparticles for the mitigation of halotolerant sulphate-reducing bacteria.
    Omran BA; Nassar HN; Younis SA; Fatthallah NA; Hamdy A; El-Shatoury EH; El-Gendy NS
    J Appl Microbiol; 2019 Jan; 126(1):138-154. PubMed ID: 30199141
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Eco-friendly laccase and cellulase enzymes pretreatment for optimized production of high content lignin-cellulose nanofibrils.
    Dias MC; Belgacem MN; de Resende JV; Martins MA; Damásio RAP; Tonoli GHD; Ferreira SR
    Int J Biol Macromol; 2022 Jun; 209(Pt A):413-425. PubMed ID: 35413312
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction of Super-Hydrophobic Lignocellulosic Nanofibrils Aerogels as Speedy Oil Absorbents.
    Huang B; Jiang J
    Appl Biochem Biotechnol; 2024 Jan; 196(1):220-232. PubMed ID: 37115386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of the Lignin Content on the Properties of Poly(Lactic Acid)/lignin-Containing Cellulose Nanofibrils Composite Films.
    Wang X; Jia Y; Liu Z; Miao J
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of silver nanoparticles in aqueous solution by activated sludge: Mechanism and characteristics.
    Chen L; Feng W; Fan J; Zhang K; Gu Z
    Sci Total Environ; 2020 Apr; 711():135155. PubMed ID: 32000348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and characterization of polystyrene with embedded silver nanoparticle nanofibers to utilize as antibacterial and wound healing biomaterial.
    Mostafa M; Kandile NG; Mahmoud MK; Ibrahim HM
    Heliyon; 2022 Jan; 8(1):e08772. PubMed ID: 35118204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse.
    Travalini AP; Lamsal B; Magalhães WLE; Demiate IM
    Int J Biol Macromol; 2019 Oct; 139():1151-1161. PubMed ID: 31419552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of lignin-containing cellulose nanofibers using deep eutectic solvents for UV-absorbing polymer reinforcement.
    Liu C; Li MC; Chen W; Huang R; Hong S; Wu Q; Mei C
    Carbohydr Polym; 2020 Oct; 246():116548. PubMed ID: 32747235
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors.
    Peng H; Guo H; Gao P; Zhou Y; Pan B; Xing B
    Sci Total Environ; 2021 Jul; 779():146326. PubMed ID: 33752010
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.
    Xu C; Zhu S; Xing C; Li D; Zhu N; Zhou H
    PLoS One; 2015; 10(4):e0122123. PubMed ID: 25875280
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellulose nanofibers decorated with SiO
    Naderahmadian A; Eftekhari-Sis B; Jafari H; Zirak M; Padervand M; Mahmoudi G; Samadi M
    Int J Biol Macromol; 2023 Aug; 247():125753. PubMed ID: 37429351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biosynthesis and Characterization of Silver Nanoparticles Using
    Rahman A; Rehman G; Shah N; Hamayun M; Ali S; Ali A; Shah SK; Khan W; Shah MIA; Alrefaei AF
    Molecules; 2023 May; 28(10):. PubMed ID: 37241943
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Eco-Friendly and Facile Synthesis of Antioxidant, Antibacterial and Anticancer Dihydromyricetin-Mediated Silver Nanoparticles.
    Li Z; Ali I; Qiu J; Zhao H; Ma W; Bai A; Wang D; Li J
    Int J Nanomedicine; 2021; 16():481-492. PubMed ID: 33500618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of cellulose nanofibril (CNF)/silver nanoparticles (AgNPs) composite in salt hydrate phase change material for efficient thermal energy storage.
    Shen Z; Oh K; Kwon S; Toivakka M; Lee HL
    Int J Biol Macromol; 2021 Mar; 174():402-412. PubMed ID: 33529630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.