These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31936395)

  • 1. Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensors.
    Falbriard M; Mohr M; Aminian K
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensor".
    Schmidt M; Alt T; Nolte K; Jaitner T
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to Comments: Hurdle Clearance Detection and Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensor.
    Falbriard M; Mohr M; Aminian K
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do Different Hurdle Heights Alter Important Spatiotemporal Variables in Hurdle Clearance?
    Ozaki Y; Ueda T
    Front Sports Act Living; 2022; 4():822592. PubMed ID: 35359500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanics of World-Class Men and Women Hurdlers.
    Hanley B; Walker J; Paradisis GP; Merlino S; Bissas A
    Front Sports Act Living; 2021; 3():704308. PubMed ID: 34308350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linear kinematics of the men's 110-m and women's 100-m hurdles races.
    McDonald C; Dapena J
    Med Sci Sports Exerc; 1991 Dec; 23(12):1382-91. PubMed ID: 1798381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Comparisons Between Elite and High-Level 60 m Hurdlers.
    González-Frutos P; Veiga S; Mallo J; Navarro E
    Front Psychol; 2019; 10():2525. PubMed ID: 31803093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors.
    Falbriard M; Meyer F; Mariani B; Millet GP; Aminian K
    Front Physiol; 2018; 9():610. PubMed ID: 29946263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinematic and Temporal Differences Between World-Class Men's and Women's Hurdling Techniques.
    Bissas A; Paradisis GP; Hanley B; Merlino S; Walker J
    Front Sports Act Living; 2022; 4():873547. PubMed ID: 35571744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of shoe-type inertial measurement units for Parkinson's disease patients during treadmill walking.
    Lee M; Youm C; Jeon J; Cheon SM; Park H
    J Neuroeng Rehabil; 2018 May; 15(1):38. PubMed ID: 29764466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematic Factors Associated with Hitting Hurdles During the Initial Phase of a 110-m Hurdle Race.
    Iwasaki R; Shinkai H; Nunome H; Ito N
    J Hum Kinet; 2022 Aug; 83():5-12. PubMed ID: 36157946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-athlete and inter-group comparisons: Running pace and step characteristics of elite athletes in the 400-m hurdles.
    Otsuka M; Isaka T
    PLoS One; 2019; 14(3):e0204185. PubMed ID: 30921329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Stride Length During the Approach Run in the 400-M Hurdles.
    Ozaki Y; Ueda T; Fukuda T; Inai T; Kido E; Narisako D
    J Hum Kinet; 2019 Oct; 69():59-67. PubMed ID: 31666889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of hurdling step strategy on the kinematics of the hurdle clearance technique.
    Rowley LJ; Churchill SM; Dunn M; Wheat J
    Sports Biomech; 2024 Oct; 23(10):1428-1442. PubMed ID: 34783302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of hurdle clearance parameters using a monocular human motion tracking method.
    Krzeszowski T; Przednowek K; Wiktorowicz K; Iskra J
    Comput Methods Biomech Biomed Engin; 2016 Sep; 19(12):1319-29. PubMed ID: 26838547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hurdle-Based Learning Design Effect on Locomotion Pattern and Hurdle Clearance Kinematic Reorganization.
    Panteli F; Theodorou A; Smirniotou A
    Motor Control; 2023 Jul; 27(3):573-595. PubMed ID: 36990444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pacing Strategy in Men's 400 m Hurdles Accounting for Temporal and Spatial Characteristics of Elite Athletes.
    Iskra J; Matusiński A; Otsuka M; Guex KJ
    J Hum Kinet; 2021 Jul; 79():175-186. PubMed ID: 34400997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angular momentum in the men's 110-m and women's 100-m hurdles races.
    McDonald C; Dapena J
    Med Sci Sports Exerc; 1991 Dec; 23(12):1392-402. PubMed ID: 1798382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on an Improved Method for Foot-Mounted Inertial/Magnetometer Pedestrian-Positioning Based on the Adaptive Gradient Descent Algorithm.
    Wang Q; Yin J; Noureldin A; Iqbal U
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of minimum ground clearance (MGC) using body-worn inertial sensors.
    McGrath D; Greene BR; Walsh C; Caulfield B
    J Biomech; 2011 Apr; 44(6):1083-8. PubMed ID: 21353226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.