These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31936422)

  • 1. Study on Short Fatigue Crack Behaviour of LZ50 Steel Under Non-Proportional Loading.
    Yang B; Liao Z; Xiao S; Yang G; Zhu T; Zhang X
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Mechanism of Creep during Crack Propagation of a Superalloy under Fatigue-Creep-Environment Interactions.
    Wang M; Du J; Deng Q
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33020419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue Growth Behaviour of Two Interacting Cracks with Different Crack Offset.
    Jin H; Cui B; Mao L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31661789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks.
    Pineau A
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Thermal Fatigue Life and Crack Morphology in Brake Discs of Low-Alloy Steel for High-Speed Trains.
    Wang J; Chen Y; Zuo L; Zhao H; Ma N
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the Enhancement Interactions between Double Parallel Cracks on Fatigue Growth Behaviors.
    Han Z; Qian C; Li H
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32630290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on Fatigue Crack Growth in Rail Steel at Numerical and Experimental Approaches.
    Yang B; Wang S; Li J; Ding X; Xiao Q; Xiao S
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Microstructure and Hydrogen Degradation of 690 MPa Grade Marine Engineering Steel.
    Ma H; Tian H; Xin J; Cui Z
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33578961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue Crack Growth Behaviour of Precipitate-Strengthened CuNi
    Yang B; Li Y; Qin Y; Zhang J; Feng B; Liao Z; Xiao S; Yang G; Zhu T
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.
    Toribio J; González B; Matos JC
    Materials (Basel); 2015 Nov; 8(11):7439-7446. PubMed ID: 28793647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Loading Frequency Ratio on Multiaxial Asynchronous Fatigue Failure of 30CrMnSiA Steel.
    Liu T; Qi X; Shi X; Gao L; Zhang T; Zhang J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors.
    Taher SA; Li J; Jeong JH; Laflamme S; Jo H; Bennett C; Collins WN; Downey ARJ
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
    Yang C; Xu W; Guo B; Shan D; Zhang J
    Materials (Basel); 2016 Jul; 9(8):. PubMed ID: 28773761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bending Fatigue Behavior of 316L Stainless Steel up to Very High Cycle Fatigue Regime.
    Hu Y; Chen Y; He C; Liu Y; Wang Q; Wang C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33126746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep-Fatigue Crack Initiation Simulation of a Modified 12% Cr Steel Based on Grain Boundary Cavitation and Plastic Slip Accumulation.
    Jin X; Wang RZ; Shu Y; Fei JW; Wen JF; Tu ST
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.