BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31936545)

  • 1. Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation.
    Boscolo D; Krämer M; Fuss MC; Durante M; Scifoni E
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
    Peukert D; Incerti S; Kempson I; Douglass M; Karamitros M; Baldacchino G; Bezak E
    Med Phys; 2019 Feb; 46(2):983-998. PubMed ID: 30536689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo calculation of the primary radical and molecular yields of liquid water radiolysis in the linear energy transfer range 0.3-6.5 keV/micrometer: application to 137Cs gamma rays.
    Meesungnoen J; Benrahmoune M; Filali-Mouhim A; Mankhetkorn S; Jay-Gerin JP
    Radiat Res; 2001 Feb; 155(2):269-78. PubMed ID: 11175661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MPEXS-DNA, a new GPU-based Monte Carlo simulator for track structures and radiation chemistry at subcellular scale.
    Okada S; Murakami K; Incerti S; Amako K; Sasaki T
    Med Phys; 2019 Mar; 46(3):1483-1500. PubMed ID: 30593679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-LET ion radiolysis of water: oxygen production in tracks.
    Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2009 Mar; 171(3):379-86. PubMed ID: 19267566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes.
    Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M
    Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of radiation quality and oxygen on clustered DNA lesions and cell death.
    Stewart RD; Yu VK; Georgakilas AG; Koumenis C; Park JH; Carlson DJ
    Radiat Res; 2011 Nov; 176(5):587-602. PubMed ID: 21823972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte-Carlo step-by-step simulation code of the non-homogeneous chemistry of the radiolysis of water and aqueous solutions--Part II: calculation of radiolytic yields under different conditions of LET, pH, and temperature.
    Plante I
    Radiat Environ Biophys; 2011 Aug; 50(3):405-15. PubMed ID: 21594646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. May oxygen depletion explain the FLASH effect? A chemical track structure analysis.
    Boscolo D; Scifoni E; Durante M; Krämer M; Fuss MC
    Radiother Oncol; 2021 Sep; 162():68-75. PubMed ID: 34214612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of water radiolysis for low-energy charged particles.
    Uehara S; Nikjoo H
    J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Computer Modeling Study of Water Radiolysis at High Dose Rates. Relevance to FLASH Radiotherapy.
    Alanazi A; Meesungnoen J; Jay-Gerin JP
    Radiat Res; 2021 Feb; 195(2):149-162. PubMed ID: 33300999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-LET radiolysis of liquid water with 1H+, 4He2+, 12C6+, and 20Ne9+ ions: effects of multiple ionization.
    Meesungnoen J; Jay-Gerin JP
    J Phys Chem A; 2005 Jul; 109(29):6406-19. PubMed ID: 16833985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of the ferrous sulfate (Fricke) dosimeter for evaluating the radioprotective potential of cystamine: experiment and Monte Carlo simulation.
    Meesat R; Sanguanmith S; Meesungnoen J; Lepage M; Khalil A; Jay-Gerin JP
    Radiat Res; 2012 Jun; 177(6):813-26. PubMed ID: 22475011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-High Dose-Rate, Pulsed (FLASH) Radiotherapy with Carbon Ions: Generation of Early, Transient, Highly Oxygenated Conditions in the Tumor Environment.
    Zakaria AM; Colangelo NW; Meesungnoen J; Azzam EI; Plourde MÉ; Jay-Gerin JP
    Radiat Res; 2020 Dec; 194(6):587-593. PubMed ID: 32853343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-radiolysis of tritiated water. 4. The scavenging effect of azide ions (N
    Sanguanmith S; Meesungnoen J; Stuart CR; Causey P; Jay-Gerin JP
    RSC Adv; 2018 Jan; 8(5):2449-2458. PubMed ID: 35541471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-LET ion radiolysis of water: visualization of the formation and evolution of ion tracks and relevance to the radiation-induced bystander effect.
    Muroya Y; Plante I; Azzam EI; Meesungnoen J; Katsumura Y; Jay-Gerin JP
    Radiat Res; 2006 Apr; 165(4):485-91. PubMed ID: 16579662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A step-by-step simulation code for estimating yields of water radiolysis species based on electron track-structure mode in the PHITS code.
    Matsuya Y; Yoshii Y; Kusumoto T; Akamatsu K; Hirata Y; Sato T; Kai T
    Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38157551
    [No Abstract]   [Full Text] [Related]  

  • 18. Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation.
    Kreipl MS; Friedland W; Paretzke HG
    Radiat Environ Biophys; 2009 Feb; 48(1):11-20. PubMed ID: 18949480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the spur lifetime and its temperature dependence in the low linear energy transfer radiolysis of water.
    Sanguanmith S; Meesungnoen J; Muroya Y; Lin M; Katsumura Y; Jay-Gerin JP
    Phys Chem Chem Phys; 2012 Dec; 14(48):16731-6. PubMed ID: 23138332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo Simulation of the Oxygen Effect in DNA Damage Induction by Ionizing Radiation.
    Forster JC; Douglass MJJ; Phillips WM; Bezak E
    Radiat Res; 2018 Sep; 190(3):248-261. PubMed ID: 29953346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.