These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31936834)
1. Alginate-Based Aerogel Particles as Drug Delivery Systems: Investigation of the Supercritical Adsorption and In Vitro Evaluations. Lovskaya D; Menshutina N Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936834 [TBL] [Abstract][Full Text] [Related]
2. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Smirnova I; Suttiruengwong S; Seiler M; Arlt W Pharm Dev Technol; 2004 Nov; 9(4):443-52. PubMed ID: 15581080 [TBL] [Abstract][Full Text] [Related]
3. Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Gonçalves VS; Gurikov P; Poejo J; Matias AA; Heinrich S; Duarte CM; Smirnova I Eur J Pharm Biopharm; 2016 Oct; 107():160-70. PubMed ID: 27393563 [TBL] [Abstract][Full Text] [Related]
4. Design of alginate-based aerogel for nonsteroidal anti-inflammatory drugs controlled delivery systems using prilling and supercritical-assisted drying. Gaudio PD; Auriemma G; Mencherini T; Porta GD; Reverchon E; Aquino RP J Pharm Sci; 2013 Jan; 102(1):185-94. PubMed ID: 23150457 [TBL] [Abstract][Full Text] [Related]
5. Polysaccharide-based aerogel microspheres for oral drug delivery. García-González CA; Jin M; Gerth J; Alvarez-Lorenzo C; Smirnova I Carbohydr Polym; 2015 Mar; 117():797-806. PubMed ID: 25498702 [TBL] [Abstract][Full Text] [Related]
6. Preparation of Protein Aerogel Particles for the Development of Innovative Drug Delivery Systems. Lovskaya D; Bezchasnyuk A; Mochalova M; Tsygankov P; Lebedev A; Zorkina Y; Zubkov E; Ochneva A; Gurina O; Silantyev A; Majouga A; Menshutina N Gels; 2022 Nov; 8(12):. PubMed ID: 36547289 [TBL] [Abstract][Full Text] [Related]
7. Mesoporous starch aerogels production as drug delivery matrices: synthesis optimization, ibuprofen loading, and release property. Mohammadi A; Moghaddas J Turk J Chem; 2020; 44(3):614-633. PubMed ID: 33488181 [TBL] [Abstract][Full Text] [Related]
8. Hollow Particles Obtained by Prilling and Supercritical Drying as a Potential Conformable Dressing for Chronic Wounds. Sellitto MR; Amante C; Aquino RP; Russo P; Rodríguez-Dorado R; Neagu M; García-González CA; Adami R; Del Gaudio P Gels; 2023 Jun; 9(6):. PubMed ID: 37367162 [TBL] [Abstract][Full Text] [Related]
9. Hybrid aerogel preparations as drug delivery matrices for low water-solubility drugs. Veres P; López-Periago AM; Lázár I; Saurina J; Domingo C Int J Pharm; 2015 Dec; 496(2):360-70. PubMed ID: 26484894 [TBL] [Abstract][Full Text] [Related]
10. Aerogels in drug delivery: From design to application. García-González CA; Sosnik A; Kalmár J; De Marco I; Erkey C; Concheiro A; Alvarez-Lorenzo C J Control Release; 2021 Apr; 332():40-63. PubMed ID: 33600880 [TBL] [Abstract][Full Text] [Related]
11. Gelatin content governs hydration induced structural changes in silica-gelatin hybrid aerogels - Implications in drug delivery. Kéri M; Forgács A; Papp V; Bányai I; Veres P; Len A; Dudás Z; Fábián I; Kalmár J Acta Biomater; 2020 Mar; 105():131-145. PubMed ID: 31953196 [TBL] [Abstract][Full Text] [Related]
12. Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles' Micromeritics. Rodríguez-Dorado R; López-Iglesias C; García-González CA; Auriemma G; Aquino RP; Del Gaudio P Molecules; 2019 Mar; 24(6):. PubMed ID: 30884869 [TBL] [Abstract][Full Text] [Related]
13. Supercritical impregnation of starch aerogels with quercetin: Fungistatic effect and release modelling with a compartmental model. Mottola S; Iannone G; Giordano M; González-Garcinuño Á; Jiménez A; Tabernero A; Martín Del Valle E; De Marco I Int J Biol Macromol; 2023 Dec; 253(Pt 6):127406. PubMed ID: 37832612 [TBL] [Abstract][Full Text] [Related]
14. In-vitro study of Ketoprofen Release from Synthesized Silica Aerogels (as Drug Carriers) and Evaluation of Mathematical Kinetic Release Models. Mohammadian M; Jafarzadeh Kashi TS; Erfan M; Pashaei Soorbaghi F Iran J Pharm Res; 2018; 17(3):818-829. PubMed ID: 30127808 [TBL] [Abstract][Full Text] [Related]
15. Composite Aerogel Comprised of Sodium Alginate and Bentonite via Supercritical CO Zhao J; Cao L; Dong Y Gels; 2022 Jun; 8(6):. PubMed ID: 35735703 [TBL] [Abstract][Full Text] [Related]
16. Preparation of Vancomycin-Loaded Aerogels Implementing Inkjet Printing and Superhydrophobic Surfaces. Remuiñán-Pose P; López-Iglesias C; Iglesias-Mejuto A; Mano JF; García-González CA; Rial-Hermida MI Gels; 2022 Jul; 8(7):. PubMed ID: 35877502 [TBL] [Abstract][Full Text] [Related]
17. Advances in Aerogels Formulations for Pulmonary Targeted Delivery of Therapeutic Agents: Safety, Efficacy and Regulatory Aspects. Verma S; Sharma PK; Malviya R; Das S Curr Pharm Biotechnol; 2024; 25(15):1939-1951. PubMed ID: 38251702 [TBL] [Abstract][Full Text] [Related]
18. A redox strategy to tailor the release properties of Fe(III)-alginate aerogels for oral drug delivery. Veres P; Sebők D; Dékány I; Gurikov P; Smirnova I; Fábián I; Kalmár J Carbohydr Polym; 2018 May; 188():159-167. PubMed ID: 29525152 [TBL] [Abstract][Full Text] [Related]
19. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier. Obaidat RM; Alnaief M; Mashaqbeh H AAPS PharmSciTech; 2018 Jul; 19(5):2226-2236. PubMed ID: 29736886 [TBL] [Abstract][Full Text] [Related]
20. Impregnation of passion fruit bagasse extract in alginate aerogel microparticles. Viganó J; Meirelles AAD; Náthia-Neves G; Baseggio AM; Cunha RL; Maróstica Junior MR; Meireles MAA; Gurikov P; Smirnova I; Martínez J Int J Biol Macromol; 2020 Jul; 155():1060-1068. PubMed ID: 31712155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]