These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 31936834)
41. Synthesis of cobalt oxide aerogels and nanocomposite systems containing single-walled carbon nanotubes. Gill SK; Shobe AM; Hope-Weeks LJ Scanning; 2009; 31(3):132-8. PubMed ID: 19452519 [TBL] [Abstract][Full Text] [Related]
42. Synthesis and Properties of Metal Oxide Aerogels via Ambient Pressure Drying. Bangi UKH; Lee KY; Maldar NMN; Park HH J Nanosci Nanotechnol; 2019 Mar; 19(3):1217-1227. PubMed ID: 30469167 [TBL] [Abstract][Full Text] [Related]
43. Release Kinetics of Dexamethasone Phosphate from Porous Chitosan: Comparison of Aerogels and Cryogels. Chartier C; Buwalda S; Ilochonwu BC; Van Den Berghe H; Bethry A; Vermonden T; Viola M; Nottelet B; Budtova T Biomacromolecules; 2023 Oct; 24(10):4494-4501. PubMed ID: 36958008 [TBL] [Abstract][Full Text] [Related]
44. Jet Cutting Technique for the Production of Chitosan Aerogel Microparticles Loaded with Vancomycin. López-Iglesias C; Barros J; Ardao I; Gurikov P; Monteiro FJ; Smirnova I; Alvarez-Lorenzo C; García-González CA Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 32013071 [TBL] [Abstract][Full Text] [Related]
45. Advanced alginate-based nanofiber aerogels: A synthetic matrix for high-efficiency lysozyme adsorption and controlled release. Xu J; Wu Q; Wang J; Liu Y; Liu K; Xia M; Wang D Int J Biol Macromol; 2024 Sep; 280(Pt 3):135974. PubMed ID: 39332565 [TBL] [Abstract][Full Text] [Related]
47. Study of the microstructure of chitosan aerogel beads prepared by supercritical CO Li CG; Dang Q; Yang Q; Chen D; Zhu H; Chen J; Liu R; Wang X RSC Adv; 2022 Jul; 12(33):21041-21049. PubMed ID: 35919839 [TBL] [Abstract][Full Text] [Related]
48. Characterisation of biodegradable pectin aerogels and their potential use as drug carriers. Veronovski A; Tkalec G; Knez Ž; Novak Z Carbohydr Polym; 2014 Nov; 113():272-8. PubMed ID: 25256485 [TBL] [Abstract][Full Text] [Related]
49. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Iglesias-Mejuto A; Magariños B; Ferreira-Gonçalves T; Starbird-Pérez R; Álvarez-Lorenzo C; Reis CP; Ardao I; García-González CA Carbohydr Polym; 2024 Jan; 324():121536. PubMed ID: 37985110 [TBL] [Abstract][Full Text] [Related]
50. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel. Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C Gels; 2021 Oct; 7(4):. PubMed ID: 34698206 [TBL] [Abstract][Full Text] [Related]
51. Synthesis of a Crystalline and Transparent Aerogel Composed of Ni-Al Layered Double Hydroxide Nanoparticles through Crystallization from Amorphous Hydrogel. Takemoto M; Tokudome Y; Noguchi D; Ueoka R; Kanamori K; Okada K; Murata H; Nakahira A; Takahashi M Langmuir; 2020 Aug; 36(32):9436-9442. PubMed ID: 32683867 [TBL] [Abstract][Full Text] [Related]
52. 3D-Printed, Dual Crosslinked and Sterile Aerogel Scaffolds for Bone Tissue Engineering. Iglesias-Mejuto A; García-González CA Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335542 [TBL] [Abstract][Full Text] [Related]
53. Thermodynamics of Azo Dye Adsorption on a Newly Synthesized Titania-Doped Silica Aerogel by Cogelation: A Comparative Investigation with Silica Aerogels and Activated Charcoal. Sarvalkar PD; Vadanagekar AS; Karvekar OS; Kumbhar PD; Terdale SS; Thounaojam AS; Kolekar SS; Vhatkar RS; Patil PS; Sharma KKK ACS Omega; 2023 Apr; 8(14):13285-13299. PubMed ID: 37065033 [TBL] [Abstract][Full Text] [Related]
54. Influence of the Impregnation Technique on the Release of Esomeprazole from Various Bioaerogels. Pantić M; Kravanja KA; Knez Ž; Novak Z Polymers (Basel); 2021 Jun; 13(11):. PubMed ID: 34204041 [TBL] [Abstract][Full Text] [Related]
55. Features of Luminescent Properties of Alginate Aerogels with Rare Earth Elements as Photoactive Cross-Linking Agents. Kaplin V; Kopylov A; Koryakovtseva A; Minaev N; Epifanov E; Gulin A; Aksenova N; Timashev P; Kuryanova A; Shershnev I; Solovieva A Gels; 2022 Sep; 8(10):. PubMed ID: 36286117 [TBL] [Abstract][Full Text] [Related]
56. Cornstarch aerogels with thymol, citronellol, carvacrol, and eugenol prepared by supercritical CO Milovanovic S; Markovic D; Jankovic-Castvan I; Lukic I Carbohydr Polym; 2024 May; 331():121874. PubMed ID: 38388060 [TBL] [Abstract][Full Text] [Related]
57. [Utilization of UiO-66-NH Chen Z; Wu Y; Tan X; Meng J; Cen J; Liu M Se Pu; 2022 Jun; 40(6):556-564. PubMed ID: 35616201 [TBL] [Abstract][Full Text] [Related]
58. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques. Wang Z; Zhu W; Huang R; Zhang Y; Jia C; Zhao H; Chen W; Xue Y Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33153103 [TBL] [Abstract][Full Text] [Related]
59. Macroscopic-Scale Preparation of Aramid Nanofiber Aerogel by Modified Freezing-Drying Method. Xie C; Liu S; Zhang Q; Ma H; Yang S; Guo ZX; Qiu T; Tuo X ACS Nano; 2021 Jun; 15(6):10000-10009. PubMed ID: 34086437 [TBL] [Abstract][Full Text] [Related]
60. Prilling and supercritical drying: A successful duo to produce core-shell polysaccharide aerogel beads for wound healing. De Cicco F; Russo P; Reverchon E; García-González CA; Aquino RP; Del Gaudio P Carbohydr Polym; 2016 Aug; 147():482-489. PubMed ID: 27178955 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]