These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31936834)

  • 61. Fabrication and characterization of bamboo shoot cellulose/sodium alginate composite aerogels for sustained release of curcumin.
    Zhang A; Zou Y; Xi Y; Wang P; Zhang Y; Wu L; Zhang H
    Int J Biol Macromol; 2021 Dec; 192():904-912. PubMed ID: 34662653
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Exploring the Versatility of Aerogels: Broad Applications in Biomedical Engineering, Astronautics, Energy Storage, Biosensing, and Current Progress.
    Khan NR; Sharmin T; Bin Rashid A
    Heliyon; 2024 Jan; 10(1):e23102. PubMed ID: 38163169
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temperature/pH-Responsive Carboxymethyl Cellulose/Poly (
    Liu Z; Zhang S; Gao C; Meng X; Wang S; Kong F
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458328
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Synthesis and Properties of Silica and Alginate Hybrid Aerogel Particles with Embedded Carbon Nanotubes (CNTs) for Selective Sorption.
    Menshutina N; Tsygankov P; Ivanov S
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30586902
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanism of Hydration and Hydration Induced Structural Changes of Calcium Alginate Aerogel.
    Forgács A; Papp V; Paul G; Marchese L; Len A; Dudás Z; Fábián I; Gurikov P; Kalmár J
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2997-3010. PubMed ID: 33401895
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Photodegradation of microcystin-LR using graphene-TiO
    Nawaz M; Moztahida M; Kim J; Shahzad A; Jang J; Miran W; Lee DS
    Carbohydr Polym; 2018 Nov; 199():109-118. PubMed ID: 30143110
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions.
    Shaheed N; Javanshir S; Esmkhani M; Dekamin MG; Naimi-Jamal MR
    Sci Rep; 2021 Sep; 11(1):18553. PubMed ID: 34535724
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Flexible, Thermally Stable, and Ultralightweight Polyimide-CNT Aerogel Composite Films for Energy Storage Applications.
    Aghababaei Tafreshi O; Saadatnia Z; Ghaffari-Mosanenzadeh S; Kumar A; Salari M; Mohseni Taromsari S; Rastegardoost MM; Park CB; Naguib HE
    ACS Appl Mater Interfaces; 2023 Nov; 15(43):50360-50377. PubMed ID: 37847866
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Pore size controllable preparation for low density porous nano-carbon.
    Feng Y; Wang J; Ge L; Jiang B; Miao L; Tanemura M
    J Nanosci Nanotechnol; 2013 Oct; 13(10):7012-5. PubMed ID: 24245178
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The preparation of novel polyvinyl alcohol (PVA)-based nanoparticle/carbon nanotubes (PNP/CNTs) aerogel for solvents adsorption application.
    Zhang H; Zhang J
    J Colloid Interface Sci; 2020 Jun; 569():254-266. PubMed ID: 32114104
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Cellulose aerogel micro fibers for drug delivery applications.
    Rostamitabar M; Subrahmanyam R; Gurikov P; Seide G; Jockenhoevel S; Ghazanfari S
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112196. PubMed ID: 34225849
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Continuous Extraction and Pumpless Supercritical CO₂ Drying System for Laboratory-Scale Aerogel Production.
    Lázár I; Fábián I
    Gels; 2016 Oct; 2(4):. PubMed ID: 30674157
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tuning bio-aerogel properties for controlling drug delivery. Part 2: Cellulose-pectin composite aerogels.
    Groult S; Buwalda S; Budtova T
    Biomater Adv; 2022 Apr; 135():212732. PubMed ID: 35929208
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Radioactivity/Radionuclide (U-232 and Am-241) Removal from Waters by Polyurea-Crosslinked Alginate Aerogels in the Sub-Picomolar Concentration Range.
    Ioannidis I; Pashalidis I; Raptopoulos G; Paraskevopoulou P
    Gels; 2023 Mar; 9(3):. PubMed ID: 36975660
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Using Supercritical Fluid Technology as a Green Alternative During the Preparation of Drug Delivery Systems.
    Chakravarty P; Famili A; Nagapudi K; Al-Sayah MA
    Pharmaceutics; 2019 Nov; 11(12):. PubMed ID: 31775292
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Environmentally friendly starch/alginate aerogels for copper adsorption from aqueous media. A microstructural and kinetic study.
    Lencina MS; Piqueras CM; Vega DA; Villar MA; Del Barrio MC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(4):369-381. PubMed ID: 36946333
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Monolithic composites of silica aerogels by reactive supercritical deposition of hydroxy-terminated poly(dimethylsiloxane).
    Sanli D; Erkey C
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11708-17. PubMed ID: 24168319
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alginate/pectin aerogel microspheres for controlled release of proanthocyanidins.
    Chen K; Zhang H
    Int J Biol Macromol; 2019 Sep; 136():936-943. PubMed ID: 31229541
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Efficient Antibacterial Agent Delivery by Mesoporous Silica Aerogel.
    Xie H; He Z; Liu Y; Zhao C; Guo B; Zhu C; Xu J
    ACS Omega; 2022 Mar; 7(9):7638-7647. PubMed ID: 35284760
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Enhanced physical and antimicrobial properties of alginate/chitosan composite aerogels based on electrostatic interactions and noncovalent crosslinking.
    Pan J; Li Y; Chen K; Zhang Y; Zhang H
    Carbohydr Polym; 2021 Aug; 266():118102. PubMed ID: 34044920
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.