BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 31936842)

  • 1. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators.
    Estabrooks S; Brodsky JL
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways.
    Ahner A; Gong X; Frizzell RA
    FEBS J; 2013 Sep; 280(18):4430-8. PubMed ID: 23809253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR.
    Sato Y; Thomas DY; Hanrahan JW
    J Biol Chem; 2019 Nov; 294(48):18269-18284. PubMed ID: 31645438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications.
    Vij N; Fang S; Zeitlin PL
    J Biol Chem; 2006 Jun; 281(25):17369-17378. PubMed ID: 16621797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of the Chaperone-Like HspB5 Rescues Trafficking and Function of F508del-CFTR.
    Degrugillier F; Aissat A; Prulière-Escabasse V; Bizard L; Simonneau B; Decrouy X; Jiang C; Rotin D; Fanen P; Simon S
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32650630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological Correction of Cystic Fibrosis: Molecular Mechanisms at the Plasma Membrane to Augment Mutant CFTR Function.
    Arora K; Naren AP
    Curr Drug Targets; 2016; 17(11):1275-81. PubMed ID: 26648081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets.
    Hanrahan JW; Sato Y; Carlile GW; Jansen G; Young JC; Thomas DY
    Expert Opin Ther Targets; 2019 Aug; 23(8):711-724. PubMed ID: 31169041
    [No Abstract]   [Full Text] [Related]  

  • 9. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
    Farinha CM; Canato S
    Cell Mol Life Sci; 2017 Jan; 74(1):39-55. PubMed ID: 27699454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy.
    Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE
    J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNF185 is a novel E3 ligase of endoplasmic reticulum-associated degradation (ERAD) that targets cystic fibrosis transmembrane conductance regulator (CFTR).
    El Khouri E; Le Pavec G; Toledano MB; Delaunay-Moisan A
    J Biol Chem; 2013 Oct; 288(43):31177-91. PubMed ID: 24019521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-molecule correctors divert CFTR-F508del from ERAD by stabilizing sequential folding states.
    Riepe C; Wąchalska M; Deol KK; Amaya AK; Porteus MH; Olzmann JA; Kopito RR
    Mol Biol Cell; 2024 Feb; 35(2):ar15. PubMed ID: 38019608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Most F508del-CFTR is targeted to degradation at an early folding checkpoint and independently of calnexin.
    Farinha CM; Amaral MD
    Mol Cell Biol; 2005 Jun; 25(12):5242-52. PubMed ID: 15923638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFTR and chaperones: processing and degradation.
    Amaral MD
    J Mol Neurosci; 2004; 23(1-2):41-8. PubMed ID: 15126691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    Chung WJ; Goeckeler-Fried JL; Havasi V; Chiang A; Rowe SM; Plyler ZE; Hong JS; Mazur M; Piazza GA; Keeton AB; White EL; Rasmussen L; Weissman AM; Denny RA; Brodsky JL; Sorscher EJ
    PLoS One; 2016; 11(10):e0163615. PubMed ID: 27732613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease.
    Strub MD; McCray PB
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32414011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622.
    Norez C; Bilan F; Kitzis A; Mettey Y; Becq F
    J Pharmacol Exp Ther; 2008 Apr; 325(1):89-99. PubMed ID: 18230692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roscovitine is a proteostasis regulator that corrects the trafficking defect of F508del-CFTR by a CDK-independent mechanism.
    Norez C; Vandebrouck C; Bertrand J; Noel S; Durieu E; Oumata N; Galons H; Antigny F; Chatelier A; Bois P; Meijer L; Becq F
    Br J Pharmacol; 2014 Nov; 171(21):4831-49. PubMed ID: 25065395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cystic fibrosis transmembrane conductance regulator as a model substrate to study endoplasmic reticulum protein quality control in mammalian cells.
    Younger JM; Fan CY; Chen L; Rosser MF; Patterson C; Cyr DM
    Methods Mol Biol; 2005; 301():293-303. PubMed ID: 15917641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.