These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31937155)

  • 1. Scaling Analysis of Phase Fluctuations of Brain Networks in Dynamic Constrained Object Manipulation.
    Fu R; Wang H; Han M; Han D; Sun J
    Int J Neural Syst; 2020 Feb; 30(2):2050002. PubMed ID: 31937155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research of movement imagery EEG based on Hilbert-Huang transform and BP neural network].
    Jin H; Zhang Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):249-53. PubMed ID: 23858742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intentions Recognition of EEG Signals with High Arousal Degree for Complex Task.
    Fu R; Han M; Wang F; Shi P
    J Med Syst; 2020 May; 44(6):110. PubMed ID: 32367317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroencephalography (EEG)-based brain-computer interface (BCI): a 2-D virtual wheelchair control based on event-related desynchronization/synchronization and state control.
    Huang D; Qian K; Fei DY; Jia W; Chen X; Bai O
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):379-88. PubMed ID: 22498703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridging the gap between motor imagery and motor execution with a brain-robot interface.
    Bauer R; Fels M; Vukelić M; Ziemann U; Gharabaghi A
    Neuroimage; 2015 Mar; 108():319-27. PubMed ID: 25527239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Dynamic Brain Networks of Motor Imagery: Time-Varying Causality Analysis of Scalp EEG.
    Li F; Peng W; Jiang Y; Song L; Liao Y; Yi C; Zhang L; Si Y; Zhang T; Wang F; Zhang R; Tian Y; Zhang Y; Yao D; Xu P
    Int J Neural Syst; 2019 Feb; 29(1):1850016. PubMed ID: 29793372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of real-time cortical feedback in motor imagery-based mental practice training.
    Bai O; Huang D; Fei DY; Kunz R
    NeuroRehabilitation; 2014; 34(2):355-63. PubMed ID: 24401829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination Improvement Through Undesirable Feedback in Coupling Object Manipulation Tasks.
    Fu R; Han M; Bao T; Wang F; Shi P
    Int J Neural Syst; 2021 May; 31(5):2150012. PubMed ID: 33573533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle-selective disinhibition of corticomotor representations using a motor imagery-based brain-computer interface.
    Takemi M; Maeda T; Masakado Y; Siebner HR; Ushiba J
    Neuroimage; 2018 Dec; 183():597-605. PubMed ID: 30172003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain functional connectivity and the pathophysiology of schizophrenia.
    Angelopoulos E
    Psychiatriki; 2014; 25(2):91-4. PubMed ID: 25035177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From intentions to actions: Neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling.
    Combrisson E; Perrone-Bertolotti M; Soto JL; Alamian G; Kahane P; Lachaux JP; Guillot A; Jerbi K
    Neuroimage; 2017 Feb; 147():473-487. PubMed ID: 27915117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of synchronization measures for capturing the lagged synchronization between EEG channels: A cognitive task recognition approach.
    Olcay BO; Karaçalı B
    Comput Biol Med; 2019 Nov; 114():103441. PubMed ID: 31561099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features.
    Hsu WY
    J Neurosci Methods; 2010 Jun; 189(2):295-302. PubMed ID: 20381529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A classification method of different motor imagery tasks based on fractal features for brain-machine interface.
    Phothisonothai M; Nakagawa M
    J Integr Neurosci; 2009 Mar; 8(1):95-122. PubMed ID: 19412982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An embedded implementation based on adaptive filter bank for brain-computer interface systems.
    Belwafi K; Romain O; Gannouni S; Ghaffari F; Djemal R; Ouni B
    J Neurosci Methods; 2018 Jul; 305():1-16. PubMed ID: 29738806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-based motor imagery analysis using weighted wavelet transform features.
    Hsu WY; Sun YN
    J Neurosci Methods; 2009 Jan; 176(2):310-8. PubMed ID: 18848844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain-Machine Interface Control.
    Barios JA; Ezquerro S; Bertomeu-Motos A; Nann M; Badesa FJ; Fernandez E; Soekadar SR; Garcia-Aracil N
    Int J Neural Syst; 2019 Jun; 29(5):1850045. PubMed ID: 30587046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using convolutional neural networks to decode EEG-based functional brain network with different severity of acrophobia.
    Wang Q; Wang H; Hu F; Hua C; Wang D
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33237885
    [No Abstract]   [Full Text] [Related]  

  • 20. Degraded EEG decoding of wrist movements in absence of kinaesthetic feedback.
    Galán F; Baker MR; Alter K; Baker SN
    Hum Brain Mapp; 2015 Feb; 36(2):643-54. PubMed ID: 25307551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.