These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 31937255)

  • 1. Automatic construction of metabolic models with enzyme constraints.
    Bekiaris PS; Klamt S
    BMC Bioinformatics; 2020 Jan; 21(1):19. PubMed ID: 31937255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ECMpy, a Simplified Workflow for Constructing Enzymatic Constrained Metabolic Network Model.
    Mao Z; Zhao X; Yang X; Zhang P; Du J; Yuan Q; Ma H
    Biomolecules; 2022 Jan; 12(1):. PubMed ID: 35053213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of an enzyme-constrained metabolic network model for Myceliophthora thermophila using machine learning-based k
    Wang Y; Mao Z; Dong J; Zhang P; Gao Q; Liu D; Tian C; Ma H
    Microb Cell Fact; 2024 May; 23(1):138. PubMed ID: 38750569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Progress and application of metabolic network model based on enzyme constraints].
    Zhao X; Yang X; Mao Z; Ma H
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1914-1924. PubMed ID: 31668038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions.
    Zhou J; Zhuang Y; Xia J
    Microb Cell Fact; 2021 Jun; 20(1):125. PubMed ID: 34193117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constraint-based modeling of heterologous pathways: application and experimental demonstration for overproduction of fatty acids in Escherichia coli.
    Ip K; Donoghue N; Kim MK; Lun DS
    Biotechnol Bioeng; 2014 Oct; 111(10):2056-66. PubMed ID: 24838438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0.
    Domenzain I; Sánchez B; Anton M; Kerkhoven EJ; Millán-Oropeza A; Henry C; Siewers V; Morrissey JP; Sonnenschein N; Nielsen J
    Nat Commun; 2022 Jun; 13(1):3766. PubMed ID: 35773252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OptMDFpathway: Identification of metabolic pathways with maximal thermodynamic driving force and its application for analyzing the endogenous CO2 fixation potential of Escherichia coli.
    Hädicke O; von Kamp A; Aydogan T; Klamt S
    PLoS Comput Biol; 2018 Sep; 14(9):e1006492. PubMed ID: 30248096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speeding up the core algorithm for the dual calculation of minimal cut sets in large metabolic networks.
    Klamt S; Mahadevan R; von Kamp A
    BMC Bioinformatics; 2020 Nov; 21(1):510. PubMed ID: 33167871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux-based hierarchical organization of Escherichia coli's metabolic network.
    Robaina-Estévez S; Nikoloski Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007832. PubMed ID: 32310959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating thermodynamic and enzymatic constraints into genome-scale metabolic models.
    Yang X; Mao Z; Zhao X; Wang R; Zhang P; Cai J; Xue C; Ma H
    Metab Eng; 2021 Sep; 67():133-144. PubMed ID: 34174426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical framework for yield (vs. rate) optimization in constraint-based modeling and applications in metabolic engineering.
    Klamt S; Müller S; Regensburger G; Zanghellini J
    Metab Eng; 2018 May; 47():153-169. PubMed ID: 29427605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between constraints, objectives, and optimality for genome-scale stoichiometric models.
    Maarleveld TR; Wortel MT; Olivier BG; Teusink B; Bruggeman FJ
    PLoS Comput Biol; 2015 Apr; 11(4):e1004166. PubMed ID: 25849486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced flux prediction by integrating relative expression and relative metabolite abundance into thermodynamically consistent metabolic models.
    Pandey V; Hadadi N; Hatzimanikatis V
    PLoS Comput Biol; 2019 May; 15(5):e1007036. PubMed ID: 31083653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MapMaker and PathTracer for tracking carbon in genome-scale metabolic models.
    Tervo CJ; Reed JL
    Biotechnol J; 2016 May; 11(5):648-61. PubMed ID: 26771089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of a diauxic growth experiment using an expanded dynamic flux balance framework.
    Karlsen E; Gylseth M; Schulz C; Almaas E
    PLoS One; 2023; 18(1):e0280077. PubMed ID: 36607958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities.
    Edwards JS; Palsson BO
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5528-33. PubMed ID: 10805808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.