These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31937524)

  • 1. Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging.
    Henninger J; Krahe R; Sinz F; Benda J
    J Exp Biol; 2020 Feb; 223(Pt 3):. PubMed ID: 31937524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosensory interference in naturally occurring aggregates of a species of weakly electric fish, Eigenmannia virescens.
    Tan EW; Nizar JM; Carrera-G E; Fortune ES
    Behav Brain Res; 2005 Oct; 164(1):83-92. PubMed ID: 16099058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrosensory and metabolic responses of weakly electric fish to changing water conductivity.
    Wiser SD; Markham MR
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38712896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species differences in group size and electrosensory interference in weakly electric fishes: implications for electrosensory processing.
    Stamper SA; Carrera-G E; Tan EW; Fugère V; Krahe R; Fortune ES
    Behav Brain Res; 2010 Mar; 207(2):368-76. PubMed ID: 19874855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus.
    Fugère V; Krahe R
    J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH-diaphorase activity and nitric oxide synthase-like immunoreactivity colocalize in the electromotor system of four species of gymnotiform fish.
    Smith GT; Unguez GA; Reinauer RM
    Brain Behav Evol; 2001; 58(3):122-36. PubMed ID: 11910170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spooky Interaction at a Distance in Cave and Surface Dwelling Electric Fishes.
    Fortune ES; Andanar N; Madhav M; Jayakumar RP; Cowan NJ; Bichuette ME; Soares D
    Front Integr Neurosci; 2020; 14():561524. PubMed ID: 33192352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.
    Dunlap KD; DiBenedictis BT; Banever SR
    J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in non-invasive tracking of wave-type electric fish in natural and laboratory settings.
    Raab T; Madhav MS; Jayakumar RP; Henninger J; Cowan NJ; Benda J
    Front Integr Neurosci; 2022; 16():965211. PubMed ID: 36118117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.
    Metzen MG; Chacron MJ
    J Exp Biol; 2014 Apr; 217(Pt 8):1381-91. PubMed ID: 24363423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen consumption in weakly electric Neotropical fishes.
    Julian D; Crampton WG; Wohlgemuth SE; Albert JS
    Oecologia; 2003 Dec; 137(4):502-11. PubMed ID: 14505027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derived loss of signal complexity and plasticity in a genus of weakly electric fish.
    Saenz DE; Gu T; Ban Y; Winemiller KO; Markham MR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34109419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.