These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31937647)

  • 1. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.
    Williams RB; Lorenz MC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids.
    Danhof HA; Vylkova S; Vesely EM; Ford AE; Gonzalez-Garay M; Lorenz MC
    mBio; 2016 Nov; 7(6):. PubMed ID: 27935835
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Vesely EM; Williams RB; Konopka JB; Lorenz MC
    mSphere; 2017; 2(5):. PubMed ID: 28904994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate dehydrogenase (Gdh2)-dependent alkalization is dispensable for escape from macrophages and virulence of Candida albicans.
    Silao FGS; Ryman K; Jiang T; Ward M; Hansmann N; Molenaar C; Liu NN; Chen C; Ljungdahl PO
    PLoS Pathog; 2020 Sep; 16(9):e1008328. PubMed ID: 32936835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of Both Pathogenic and Nonpathogenic CUG Clade
    Pountain AW; Collette JR; Farrell WM; Lorenz MC
    mBio; 2021 Dec; 12(6):e0331721. PubMed ID: 34903044
    [No Abstract]   [Full Text] [Related]  

  • 6. Candida albicans hypha formation and mannan masking of β-glucan inhibit macrophage phagosome maturation.
    Bain JM; Louw J; Lewis LE; Okai B; Walls CA; Ballou ER; Walker LA; Reid D; Munro CA; Brown AJ; Brown GD; Gow NA; Erwig LP
    mBio; 2014 Dec; 5(6):e01874. PubMed ID: 25467440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen.
    Ene IV; Adya AK; Wehmeier S; Brand AC; MacCallum DM; Gow NA; Brown AJ
    Cell Microbiol; 2012 Sep; 14(9):1319-35. PubMed ID: 22587014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phagosomal Neutralization by the Fungal Pathogen Candida albicans Induces Macrophage Pyroptosis.
    Vylkova S; Lorenz MC
    Infect Immun; 2017 Feb; 85(2):. PubMed ID: 27872238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes.
    Ramírez MA; Lorenz MC
    Eukaryot Cell; 2007 Feb; 6(2):280-90. PubMed ID: 17158734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress adaptation in a pathogenic fungus.
    Brown AJ; Budge S; Kaloriti D; Tillmann A; Jacobsen MD; Yin Z; Ene IV; Bohovych I; Sandai D; Kastora S; Potrykus J; Ballou ER; Childers DS; Shahana S; Leach MD
    J Exp Biol; 2014 Jan; 217(Pt 1):144-55. PubMed ID: 24353214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH.
    Vylkova S; Carman AJ; Danhof HA; Collette JR; Zhou H; Lorenz MC
    mBio; 2011; 2(3):e00055-11. PubMed ID: 21586647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-acetylglucosamine (GlcNAc)-inducible gene GIG2 is a novel component of GlcNAc metabolism in Candida albicans.
    Ghosh S; Hanumantha Rao K; Bhavesh NS; Das G; Dwivedi VP; Datta A
    Eukaryot Cell; 2014 Jan; 13(1):66-76. PubMed ID: 24186949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial protein Mcu1 plays important roles in carbon source utilization, filamentation, and virulence in Candida albicans.
    Guan G; Wang H; Liang W; Cao C; Tao L; Naseem S; Konopka JB; Wang Y; Huang G
    Fungal Genet Biol; 2015 Aug; 81():150-9. PubMed ID: 25626172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans.
    Enjalbert B; MacCallum DM; Odds FC; Brown AJ
    Infect Immun; 2007 May; 75(5):2143-51. PubMed ID: 17339352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Screening Identifies Genes Required for
    O'Meara TR; Duah K; Guo CX; Maxson ME; Gaudet RG; Koselny K; Wellington M; Powers ME; MacAlpine J; O'Meara MJ; Veri AO; Grinstein S; Noble SM; Krysan D; Gray-Owen SD; Cowen LE
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport.
    Vylkova S; Lorenz MC
    PLoS Pathog; 2014 Mar; 10(3):e1003995. PubMed ID: 24626429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells.
    Ene IV; Cheng SC; Netea MG; Brown AJ
    Infect Immun; 2013 Jan; 81(1):238-48. PubMed ID: 23115042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SPS amino acid sensor mediates nutrient acquisition and immune evasion in Candida albicans.
    Miramón P; Lorenz MC
    Cell Microbiol; 2016 Nov; 18(11):1611-1624. PubMed ID: 27060451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans.
    Zhou H; Lorenz MC
    Microbiology (Reading); 2008 Feb; 154(Pt 2):500-509. PubMed ID: 18227254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions.
    Wagener J; MacCallum DM; Brown GD; Gow NA
    mBio; 2017 Jan; 8(1):. PubMed ID: 28119468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.