These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31937806)

  • 1. ToF-SIMS 3D imaging unveils important insights on the cellular microenvironment during biomineralization of gold nanostructures.
    Singh AV; Jungnickel H; Leibrock L; Tentschert J; Reichardt P; Katz A; Laux P; Luch A
    Sci Rep; 2020 Jan; 10(1):261. PubMed ID: 31937806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of gold cysteine thiolate complexes on gold nanoparticles with time-of-flight secondary ion mass spectrometry.
    Nie HY; Romanovskaia E; Romanovski V; Hedberg J; Hedberg YS
    Biointerphases; 2021 Apr; 16(2):021005. PubMed ID: 33810641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary ions mass spectrometric signal enhancement of peptides on enlarged-gold nanoparticle surfaces.
    Kim YP; Lee TG
    Anal Chem; 2012 Jun; 84(11):4784-8. PubMed ID: 22512721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AES and ToF-SIMS combination for single cell chemical imaging of gold nanoparticle-labeled
    Courrèges C; Bonnecaze M; Flahaut D; Nolivos S; Grimaud R; Allouche J
    Chem Commun (Camb); 2021 Jun; 57(44):5446-5449. PubMed ID: 33950059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of TOF-SIMS and CLSM imaging method for cytotoxicity study of ZnO nanoparticles in HaCaT cells.
    Lee PL; Chen BC; Gollavelli G; Shen SY; Yin YS; Lei SL; Jhang CL; Lee WR; Ling YC
    J Hazard Mater; 2014 Jul; 277():3-12. PubMed ID: 24731914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg(2+) ion sensing, cellular imaging and antibacterial applications.
    Khandelwal P; Singh DK; Sadhu S; Poddar P
    Nanoscale; 2015 Dec; 7(47):19985-20002. PubMed ID: 26564987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.
    Kim YP; Shon HK; Shin SK; Lee TG
    Mass Spectrom Rev; 2015; 34(2):237-47. PubMed ID: 24890130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal nanoparticle deposition for TOF-SIMS signal enhancement of polymers.
    Marcus A; Winograd N
    Anal Chem; 2006 Jan; 78(1):141-8. PubMed ID: 16383321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid seeded growth of monodisperse, quasi-spherical, citrate-stabilized gold nanoparticles via H2O2 reduction.
    Liu X; Xu H; Xia H; Wang D
    Langmuir; 2012 Sep; 28(38):13720-6. PubMed ID: 22954316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical evaluation of polyethylene glycol ligand conjugation to gold nanoparticle surface using ToF-SIMS and statistical analysis.
    Shon HK; Son JG; Joh S; Moon JH; Lee TG
    Biointerphases; 2020 May; 15(3):031008. PubMed ID: 32460504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of ZrO₂ Nanoparticles in Lung Tissue Sections by Time-of-Flight Secondary Ion Mass Spectrometry and Ion Beam Microscopy.
    Veith L; Böttner J; Vennemann A; Breitenstein D; Engelhard C; Meijer J; Estrela-Lopis I; Wiemann M; Hagenhoff B
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29342982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theranostic potential of gold nanoparticle-protein agglomerates.
    Sanpui P; Paul A; Chattopadhyay A
    Nanoscale; 2015 Nov; 7(44):18411-23. PubMed ID: 26508277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava.
    Venkatesan J; Manivasagan P; Kim SK; Kirthi AV; Marimuthu S; Rahuman AA
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1591-7. PubMed ID: 24525832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of SiO
    Veith L; Vennemann A; Breitenstein D; Engelhard C; Wiemann M; Hagenhoff B
    Analyst; 2017 Jul; 142(14):2631-2639. PubMed ID: 28608905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanoparticle-assisted enhancement in bioactive properties of Australian native plant extracts, Tasmannia lanceolata and Backhousia citriodora.
    Khandanlou R; Murthy V; Wang H
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110922. PubMed ID: 32409072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS.
    Graham DJ; Wilson JT; Lai JJ; Stayton PS; Castner DG
    Biointerphases; 2015 Jun; 11(2):02A304. PubMed ID: 26531772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A label-free colorimetric detection of lead ions by controlling the ligand shells of gold nanoparticles.
    Hung YL; Hsiung TM; Chen YY; Huang CC
    Talanta; 2010 Jul; 82(2):516-22. PubMed ID: 20602929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines.
    El-Hussein A; Mfouo-Tynga I; Abdel-Harith M; Abrahamse H
    J Photochem Photobiol B; 2015 Dec; 153():67-75. PubMed ID: 26398813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic formation of gold nanoparticles by submerged culture of the basidiomycete Lentinus edodes.
    Vetchinkina EP; Loshchinina EA; Burov AM; Dykman LA; Nikitina VE
    J Biotechnol; 2014 Jul; 182-183():37-45. PubMed ID: 24800960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.