These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 31937944)
1. Reduction of the therapeutic dose of silencing RNA by packaging it in extracellular vesicles via a pre-microRNA backbone. Reshke R; Taylor JA; Savard A; Guo H; Rhym LH; Kowalski PS; Trung MT; Campbell C; Little W; Anderson DG; Gibbings D Nat Biomed Eng; 2020 Jan; 4(1):52-68. PubMed ID: 31937944 [TBL] [Abstract][Full Text] [Related]
2. Functional Delivery of Lipid-Conjugated siRNA by Extracellular Vesicles. O'Loughlin AJ; Mäger I; de Jong OG; Varela MA; Schiffelers RM; El Andaloussi S; Wood MJA; Vader P Mol Ther; 2017 Jul; 25(7):1580-1587. PubMed ID: 28392161 [TBL] [Abstract][Full Text] [Related]
3. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Pi F; Binzel DW; Lee TJ; Li Z; Sun M; Rychahou P; Li H; Haque F; Wang S; Croce CM; Guo B; Evers BM; Guo P Nat Nanotechnol; 2018 Jan; 13(1):82-89. PubMed ID: 29230043 [TBL] [Abstract][Full Text] [Related]
4. GAPDH controls extracellular vesicle biogenesis and enhances the therapeutic potential of EV mediated siRNA delivery to the brain. Dar GH; Mendes CC; Kuan WL; Speciale AA; Conceição M; Görgens A; Uliyakina I; Lobo MJ; Lim WF; El Andaloussi S; Mäger I; Roberts TC; Barker RA; Goberdhan DCI; Wilson C; Wood MJA Nat Commun; 2021 Nov; 12(1):6666. PubMed ID: 34795295 [TBL] [Abstract][Full Text] [Related]
5. Chitosan-based nanoparticles for mucosal delivery of RNAi therapeutics. Martirosyan A; Olesen MJ; Howard KA Adv Genet; 2014; 88():325-52. PubMed ID: 25409611 [TBL] [Abstract][Full Text] [Related]
6. Endosomolytic and Tumor-Penetrating Mesoporous Silica Nanoparticles for siRNA/miRNA Combination Cancer Therapy. Wang Y; Xie Y; Kilchrist KV; Li J; Duvall CL; Oupický D ACS Appl Mater Interfaces; 2020 Jan; 12(4):4308-4322. PubMed ID: 31939276 [TBL] [Abstract][Full Text] [Related]
7. Preparation and Isolation of siRNA-Loaded Extracellular Vesicles. Vader P; Mäger I; Lee Y; Nordin JZ; Andaloussi SE; Wood MJ Methods Mol Biol; 2017; 1545():197-204. PubMed ID: 27943216 [TBL] [Abstract][Full Text] [Related]
8. Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics. Gentile E; Oba T; Lin J; Shao R; Meng F; Cao X; Lin HY; Mourad M; Pataer A; Baladandayuthapani V; Cai D; Roth JA; Ji L Oncotarget; 2017 Jul; 8(29):48222-48239. PubMed ID: 28637023 [TBL] [Abstract][Full Text] [Related]
9. Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Boden D; Pusch O; Silbermann R; Lee F; Tucker L; Ramratnam B Nucleic Acids Res; 2004; 32(3):1154-8. PubMed ID: 14966264 [TBL] [Abstract][Full Text] [Related]
10. Production of Extracellular Vesicles Loaded with Therapeutic Cargo. Lamichhane TN; Jay SM Methods Mol Biol; 2018; 1831():37-47. PubMed ID: 30051423 [TBL] [Abstract][Full Text] [Related]
11. Functional siRNA Delivery by Extracellular Vesicle-Liposome Hybrid Nanoparticles. Evers MJW; van de Wakker SI; de Groot EM; de Jong OG; Gitz-François JJJ; Seinen CS; Sluijter JPG; Schiffelers RM; Vader P Adv Healthc Mater; 2022 Mar; 11(5):e2101202. PubMed ID: 34382360 [TBL] [Abstract][Full Text] [Related]
12. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Lee TJ; Haque F; Shu D; Yoo JY; Li H; Yokel RA; Horbinski C; Kim TH; Kim SH; Kwon CH; Nakano I; Kaur B; Guo P; Croce CM Oncotarget; 2015 Jun; 6(17):14766-76. PubMed ID: 25885522 [TBL] [Abstract][Full Text] [Related]
13. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Thanki K; Zeng X; Justesen S; Tejlmann S; Falkenberg E; Van Driessche E; Mørck Nielsen H; Franzyk H; Foged C Eur J Pharm Biopharm; 2017 Nov; 120():22-33. PubMed ID: 28756280 [TBL] [Abstract][Full Text] [Related]
14. Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. Hagiwara K; Katsuda T; Gailhouste L; Kosaka N; Ochiya T FEBS Lett; 2015 Dec; 589(24 Pt B):4071-8. PubMed ID: 26632510 [TBL] [Abstract][Full Text] [Related]
15. Promising RNA-based cancer gene therapy using extracellular vesicles for drug delivery. Xue VW; Wong SCC; Song G; Cho WCS Expert Opin Biol Ther; 2020 Jul; 20(7):767-777. PubMed ID: 32125904 [TBL] [Abstract][Full Text] [Related]
16. Loading of Extracellular Vesicles with Hydrophobically Modified siRNAs. Didiot MC; Haraszti RA; Aronin N; Khvorova A Methods Mol Biol; 2018; 1740():199-214. PubMed ID: 29388146 [TBL] [Abstract][Full Text] [Related]
17. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Kim GH; Won JE; Byeon Y; Kim MG; Wi TI; Lee JM; Park YY; Lee JW; Kang TH; Jung ID; Shin BC; Ahn HJ; Lee YJ; Sood AK; Han HD; Park YM Drug Deliv; 2018 Nov; 25(1):1394-1402. PubMed ID: 29890852 [TBL] [Abstract][Full Text] [Related]
18. Hydrophobicity of Lipid-Conjugated siRNAs Predicts Productive Loading to Small Extracellular Vesicles. Biscans A; Haraszti RA; Echeverria D; Miller R; Didiot MC; Nikan M; Roux L; Aronin N; Khvorova A Mol Ther; 2018 Jun; 26(6):1520-1528. PubMed ID: 29699940 [TBL] [Abstract][Full Text] [Related]
19. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. Lee SJ; Yhee JY; Kim SH; Kwon IC; Kim K J Control Release; 2013 Nov; 172(1):358-366. PubMed ID: 24036198 [TBL] [Abstract][Full Text] [Related]