These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31938482)
1. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Qui-Minet ZN; Coudret J; Davoult D; Grall J; Mendez-Sandin M; Cariou T; Martin S Ecol Evol; 2019 Dec; 9(24):13787-13807. PubMed ID: 31938482 [TBL] [Abstract][Full Text] [Related]
2. Physiology of maerl algae: Comparison of inter- and intraspecies variations. Qui-Minet ZN; Davoult D; Grall J; Delaunay C; Six C; Cariou T; Martin S J Phycol; 2021 Jun; 57(3):831-848. PubMed ID: 33316844 [TBL] [Abstract][Full Text] [Related]
3. Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Noisette F; Duong G; Six C; Davoult D; Martin S J Phycol; 2013 Aug; 49(4):746-57. PubMed ID: 27007207 [TBL] [Abstract][Full Text] [Related]
5. Temperature amplifies the effect of high CO Sordo L; Santos R; Barrote I; Silva J Ecol Evol; 2019 Oct; 9(19):11000-11009. PubMed ID: 31641450 [TBL] [Abstract][Full Text] [Related]
6. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Martin S; Cohu S; Vignot C; Zimmerman G; Gattuso JP Ecol Evol; 2013 Mar; 3(3):676-93. PubMed ID: 23533024 [TBL] [Abstract][Full Text] [Related]
7. A multilocus species delimitation reveals a striking number of species of coralline algae forming Maerl in the OSPAR maritime area. Pardo C; Lopez L; Peña V; Hernández-Kantún J; Le Gall L; Bárbara I; Barreiro R PLoS One; 2014; 9(8):e104073. PubMed ID: 25111057 [TBL] [Abstract][Full Text] [Related]
8. Differential impacts of ocean acidification and warming on winter and summer progeny of a coastal squid (Loligo vulgaris). Rosa R; Trübenbach K; Pimentel MS; Boavida-Portugal J; Faleiro F; Baptista M; Dionísio G; Calado R; Pörtner HO; Repolho T J Exp Biol; 2014 Feb; 217(Pt 4):518-25. PubMed ID: 24523499 [TBL] [Abstract][Full Text] [Related]
9. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
10. Changes in maerl-associated macroalgal community dynamics as evidence of anthropogenic pressure. Helias M; Grall J; Jardim VL; Toumi C; Burel T Ann Bot; 2024 May; 133(7):1025-1040. PubMed ID: 38502708 [TBL] [Abstract][Full Text] [Related]
13. Future shock: Ocean acidification and seasonal water temperatures alter the physiology of competing temperate and coral reef fishes. Mitchell A; Hayes C; Booth DJ; Nagelkerken I Sci Total Environ; 2023 Jul; 883():163684. PubMed ID: 37100135 [TBL] [Abstract][Full Text] [Related]
14. Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events. Rendina F; Bouchet PJ; Appolloni L; Russo GF; Sandulli R; Kolzenburg R; Putra A; Ragazzola F Mar Environ Res; 2019 Sep; 150():104764. PubMed ID: 31376632 [TBL] [Abstract][Full Text] [Related]
15. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). Schoenrock KM; Bacquet M; Pearce D; Rea BR; Schofield JE; Lea J; Mair D; Kamenos N J Phycol; 2018 Oct; 54(5):690-702. PubMed ID: 30079466 [TBL] [Abstract][Full Text] [Related]
16. Rhodolith primary and carbonate production in a changing ocean: The interplay of warming and nutrients. Schubert N; Salazar VW; Rich WA; Vivanco Bercovich M; Almeida Saá AC; Fadigas SD; Silva J; Horta PA Sci Total Environ; 2019 Aug; 676():455-468. PubMed ID: 31048175 [TBL] [Abstract][Full Text] [Related]
17. Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Kim JH; Kim N; Moon H; Lee S; Jeong SY; Diaz-Pulido G; Edwards MS; Kang JH; Kang EJ; Oh HJ; Hwang JD; Kim IN Mar Pollut Bull; 2020 Aug; 157():111324. PubMed ID: 32658689 [TBL] [Abstract][Full Text] [Related]
18. Daily changes on seasonal ecophysiological responses of the intertidal brown macroalga Celis-Plá PSM; Trabal A; Navarrete C; Troncoso M; Moenne F; Zúñiga A; Figueroa FL; Sáez CA Front Plant Sci; 2022; 13():941061. PubMed ID: 36247624 [TBL] [Abstract][Full Text] [Related]
19. Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Okazaki RR; Towle EK; van Hooidonk R; Mor C; Winter RN; Piggot AM; Cunning R; Baker AC; Klaus JS; Swart PK; Langdon C Glob Chang Biol; 2017 Mar; 23(3):1023-1035. PubMed ID: 27561209 [TBL] [Abstract][Full Text] [Related]
20. An intertidal life: Combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community. Ragazzola F; Marchini A; Adani M; Bordone A; Castelli A; Cerrati G; Kolzenburg R; Langeneck J; di Marzo C; Nannini M; Raiteri G; Romanelli E; Santos M; Vasapollo C; Pipitone C; Lombardi C Mar Environ Res; 2021 Jul; 169():105342. PubMed ID: 33933902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]