These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3193856)

  • 1. Inhibitory effects of pyridoxal phosphate, ascorbate and aminoguanidine on nonenzymatic glycosylation.
    Khatami M; Suldan Z; David I; Li W; Rockey JH
    Life Sci; 1988; 43(21):1725-31. PubMed ID: 3193856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of advanced protein glycation by a Schiff base between aminoguanidine and pyridoxal.
    Taguchi T; Sugiura M; Hamada Y; Miwa I
    Eur J Pharmacol; 1999 Aug; 378(3):283-9. PubMed ID: 10493104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aminoguanidine and pyridoxal phosphate on glycation reaction of aspartate aminotransferase and serum albumin.
    Okada M; Ayabe Y
    J Nutr Sci Vitaminol (Tokyo); 1995 Feb; 41(1):43-50. PubMed ID: 7616326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking.
    Brownlee M; Vlassara H; Kooney A; Ulrich P; Cerami A
    Science; 1986 Jun; 232(4758):1629-32. PubMed ID: 3487117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nonenzymatic glycosylation of mesangial matrix on proliferation of mesangial cells.
    Crowley ST; Brownlee M; Edelstein D; Satriano JA; Mori T; Singhal PC; Schlondorff DO
    Diabetes; 1991 May; 40(5):540-7. PubMed ID: 1708734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoguanidine pyridoxal adduct is superior to aminoguanidine for preventing diabetic nephropathy in mice.
    Miyoshi H; Taguchi T; Sugiura M; Takeuchi M; Yanagisawa K; Watanabe Y; Miwa I; Makita Z; Koike T
    Horm Metab Res; 2002 Jul; 34(7):371-7. PubMed ID: 12189584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant activity of a Schiff base of pyridoxal and aminoguanidine.
    Chen AS; Taguchi T; Aoyama S; Sugiura M; Haruna M; Wang MW; Miwa I
    Free Radic Biol Med; 2003 Dec; 35(11):1392-403. PubMed ID: 14642387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of aminoguanidine and copper(II) ions on the formation of advanced glycosylation end products. In vitro study on human serum albumin.
    Jakus V; Bauerová K; Rietbrock N
    Arzneimittelforschung; 2001; 51(4):280-3. PubMed ID: 11367867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine.
    Booth AA; Khalifah RG; Hudson BG
    Biochem Biophys Res Commun; 1996 Mar; 220(1):113-9. PubMed ID: 8602828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminin alterations after in vitro nonenzymatic glycosylation.
    Charonis AS; Reger LA; Dege JE; Kouzi-Koliakos K; Furcht LT; Wohlhueter RM; Tsilibary EC
    Diabetes; 1990 Jul; 39(7):807-14. PubMed ID: 2113013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic studies of advanced glycosylation end product inhibition by aminoguanidine.
    Edelstein D; Brownlee M
    Diabetes; 1992 Jan; 41(1):26-9. PubMed ID: 1727735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo formation of a Schiff base of aminoguanidine with pyridoxal phosphate.
    Taguchi T; Sugiura M; Hamada Y; Miwa I
    Biochem Pharmacol; 1998 May; 55(10):1667-71. PubMed ID: 9634003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of aminoguanidine on the glycation (non-enzymic glycosylation) of lens proteins.
    Lewis BS; Harding JJ
    Exp Eye Res; 1990 May; 50(5):463-7. PubMed ID: 2373149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminophospholipid glycation and its inhibitor screening system: a new role of pyridoxal 5'-phosphate as the inhibitor.
    Higuchi O; Nakagawa K; Tsuzuki T; Suzuki T; Oikawa S; Miyazawa T
    J Lipid Res; 2006 May; 47(5):964-74. PubMed ID: 16470027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminoguanidine and its pro-oxidant effects on an experimental model of protein glycation.
    Skamarauskas JT; McKay AG; Hunt JV
    Free Radic Biol Med; 1996; 21(6):801-12. PubMed ID: 8902526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimethylarginine dimethylaminohydrolase inhibition and asymmetric dimethylarginine accumulation contribute to endothelial dysfunction in rats exposed to glycosylated protein: effects of aminoguanidine.
    Yin QF; Fu SH; He P; Xiong Y
    Atherosclerosis; 2007 Jan; 190(1):53-61. PubMed ID: 16533509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate.
    Cole SC; Yon RJ
    Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the effect of different inhibitors of the non-enzymatic glycation of rat tail tendons and bovine serum albumin.
    Menzel EJ; Reihsner R
    Ann Clin Biochem; 1996 May; 33 ( Pt 3)():241-8. PubMed ID: 8791988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resorcylidene aminoguanidine induces antithrombotic action that is not dependent on its antiglycation activity.
    Watala C; Dobaczewski M; Kazmierczak P; Gebicki J; Nocun M; Zitnanova I; Ulicna O; Durackova Z; Waczulíková I; Carsky J; Chlopicki S
    Vascul Pharmacol; 2009 Oct; 51(4):275-83. PubMed ID: 19635586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of mouse liver ornithine decarboxylase by metabolites.
    Morley CG; Ho H
    Biochim Biophys Acta; 1976 Jul; 438(2):551-62. PubMed ID: 952946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.