BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3193866)

  • 21. Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency.
    Lenton JP; van der Woude L; Fowler N; Goosey-Tolfrey V
    Int J Sports Med; 2009 Apr; 30(4):233-9. PubMed ID: 19199211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The intra-push velocity profile of the over-ground racing wheelchair sprint start.
    Moss AD; Fowler NE; Goosey-Tolfrey VL
    J Biomech; 2005 Jan; 38(1):15-22. PubMed ID: 15519335
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of varied tempo music on wheelchair mechanical efficiency following 3-week practice.
    Goosey-Tolfrey VL; West M; Lenton JP; Tolfrey K
    Int J Sports Med; 2011 Feb; 32(2):126-31. PubMed ID: 21165800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.
    van der Woude LH; Veeger HE; Rozendal RH; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):625-32. PubMed ID: 2731532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manual wheelchair propulsion: effects of power output on physiology and technique.
    van der Woude LH; Hendrich KM; Veeger HE; van Ingen Schenau GJ; Rozendal RH; de Groot G; Hollander AP
    Med Sci Sports Exerc; 1988 Feb; 20(1):70-8. PubMed ID: 2963939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physiological and metabolic responses of wheelchair athletes in different racing classes to prolonged exercise.
    Campbell IG; Williams C; Lakomy HK
    J Sports Sci; 2004 May; 22(5):449-56. PubMed ID: 15160598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of wheelchair rolling resistance with a handle bar push technique.
    van der Woude LH; Geurts C; Winkelman H; Veeger HE
    J Med Eng Technol; 2003; 27(6):249-58. PubMed ID: 14602516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis.
    Guo LY; Su FC; An KN
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):107-15. PubMed ID: 16226359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of hand-held weights on the physiological responses to walking exercise.
    Graves JE; Pollock ML; Montain SJ; Jackson AS; O'Keefe JM
    Med Sci Sports Exerc; 1987 Jun; 19(3):260-5. PubMed ID: 3600240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Propulsion technique in hand rim wheelchair ambulation.
    van der Woude LH; Veeger HE; Rozendal RH
    J Med Eng Technol; 1989; 13(1-2):136-41. PubMed ID: 2733007
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of 4-weeks of asynchronous hand-rim wheelchair practice on mechanical efficiency and timing.
    Lenton JP; Van Der Woude LH; Fowler NE; Goosey-Tolfrey V
    Disabil Rehabil; 2010; 32(26):2155-64. PubMed ID: 20731561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.
    de Groot S; Vegter RJ; van der Woude LH
    Med Eng Phys; 2013 Oct; 35(10):1476-82. PubMed ID: 23642660
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The maximum physiological responses during incremental wheelchair and arm cranking exercise in male paraplegics.
    Gass GC; Camp EM
    Med Sci Sports Exerc; 1984 Aug; 16(4):355-9. PubMed ID: 6436633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Muscular efficiency during arm cranking and wheelchair exercise: a comparison.
    Hintzy F; Tordi N; Perrey S
    Int J Sports Med; 2002 Aug; 23(6):408-14. PubMed ID: 12215959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Energy cost of propulsion in standard and ultralight wheelchairs in people with spinal cord injuries.
    Beekman CE; Miller-Porter L; Schoneberger M
    Phys Ther; 1999 Feb; 79(2):146-58. PubMed ID: 10029055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface electromyography activity of trunk muscles during wheelchair propulsion.
    Yang YS; Koontz AM; Triolo RJ; Mercer JL; Boninger ML
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1032-41. PubMed ID: 16979271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of wheel size on mobility performance in wheelchair athletes.
    Mason B; van der Woude L; Lenton JP; Goosey-Tolfrey V
    Int J Sports Med; 2012 Oct; 33(10):807-12. PubMed ID: 22592541
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.