BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31939065)

  • 1. Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase.
    Harikishore A; Chong SSM; Ragunathan P; Bates RW; Grüber G
    Mol Divers; 2021 Feb; 25(1):517-524. PubMed ID: 31939065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal Respiratory Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics?
    Bajeli S; Baid N; Kaur M; Pawar GP; Chaudhari VD; Kumar A
    Front Cell Infect Microbiol; 2020; 10():589318. PubMed ID: 33330134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting the synthetic lethality between terminal respiratory oxidases to kill
    Kalia NP; Hasenoehrl EJ; Ab Rahman NB; Koh VH; Ang MLT; Sajorda DR; Hards K; Grüber G; Alonso S; Cook GM; Berney M; Pethe K
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7426-7431. PubMed ID: 28652330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Features and Functional Importance of Key Residues of the
    Sviriaeva E; Subramanian Manimekalai MS; Grüber G; Pethe K
    ACS Infect Dis; 2020 Jul; 6(7):1697-1707. PubMed ID: 32379966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-Electron Microscopy Structure of the
    Mathiyazakan V; Wong CF; Harikishore A; Pethe K; Grüber G
    Antimicrob Agents Chemother; 2023 Jun; 67(6):e0153122. PubMed ID: 37158740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting the cytochrome oxidases for drug development in mycobacteria.
    Lee BS; Sviriaeva E; Pethe K
    Prog Biophys Mol Biol; 2020 May; 152():45-54. PubMed ID: 32081616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome
    Fischer M; Falke D; Naujoks C; Sawers RG
    J Bacteriol; 2018 Aug; 200(16):. PubMed ID: 29784883
    [No Abstract]   [Full Text] [Related]  

  • 8. Discovery of 1-hydroxy-2-methylquinolin-4(1H)-one derivatives as new cytochrome bd oxidase inhibitors for tuberculosis therapy.
    Zhou Y; Shao M; Wang W; Cheung CY; Wu Y; Yu H; Hu X; Cook GM; Gong H; Lu X
    Eur J Med Chem; 2023 Jan; 245(Pt 1):114896. PubMed ID: 36370551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis.
    Lee BS; Hards K; Engelhart CA; Hasenoehrl EJ; Kalia NP; Mackenzie JS; Sviriaeva E; Chong SMS; Manimekalai MSS; Koh VH; Chan J; Xu J; Alonso S; Miller MJ; Steyn AJC; Grüber G; Schnappinger D; Berney M; Cook GM; Moraski GC; Pethe K
    EMBO Mol Med; 2021 Jan; 13(1):e13207. PubMed ID: 33283973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria.
    Cook GM; Hards K; Vilchèze C; Hartman T; Berney M
    Microbiol Spectr; 2014 Jun; 2(3):. PubMed ID: 25346874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and Characterization of a Hybrid Respiratory Supercomplex Consisting of Mycobacterium tuberculosis Cytochrome bcc and Mycobacterium smegmatis Cytochrome aa3.
    Kim MS; Jang J; Ab Rahman NB; Pethe K; Berry EA; Huang LS
    J Biol Chem; 2015 Jun; 290(23):14350-60. PubMed ID: 25861988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress.
    Lu P; Heineke MH; Koul A; Andries K; Cook GM; Lill H; van Spanning R; Bald D
    Sci Rep; 2015 May; 5():10333. PubMed ID: 26015371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the cytochrome bc1-aa3 branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption.
    Matsoso LG; Kana BD; Crellin PK; Lea-Smith DJ; Pelosi A; Powell D; Dawes SS; Rubin H; Coppel RL; Mizrahi V
    J Bacteriol; 2005 Sep; 187(18):6300-8. PubMed ID: 16159762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel targets and inhibitors of the
    Harikishore A; Mathiyazakan V; Pethe K; Grüber G
    Expert Opin Drug Discov; 2023; 18(8):917-927. PubMed ID: 37332221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc
    Kalia NP; Shi Lee B; Ab Rahman NB; Moraski GC; Miller MJ; Pethe K
    Sci Rep; 2019 Jun; 9(1):8608. PubMed ID: 31197236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antituberculosis Activity of the Antimalaria Cytochrome
    Chong SMS; Manimekalai MSS; Sarathy JP; Williams ZC; Harold LK; Cook GM; Dick T; Pethe K; Bates RW; Grüber G
    ACS Infect Dis; 2020 Apr; 6(4):725-737. PubMed ID: 32092260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Menaquinol oxidase activity and primary structure of cytochrome bd from the amino-acid fermenting bacterium Corynebacterium glutamicum.
    Kusumoto K; Sakiyama M; Sakamoto J; Noguchi S; Sone N
    Arch Microbiol; 2000; 173(5-6):390-7. PubMed ID: 10896219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome bc1-aa3 Oxidase Supercomplex As Emerging and Potential Drug Target Against Tuberculosis.
    Sindhu T; Debnath P
    Curr Mol Pharmacol; 2022; 15(2):380-392. PubMed ID: 34602044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of Mycobacterium tuberculosis Cytochrome
    Moosa A; Lamprecht DA; Arora K; Barry CE; Boshoff HIM; Ioerger TR; Steyn AJC; Mizrahi V; Warner DF
    Antimicrob Agents Chemother; 2017 Oct; 61(10):. PubMed ID: 28760899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome
    Forte E; Giuffrè A; Huang LS; Berry EA; Borisov VB
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33198276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.