BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31939128)

  • 1. Enzyme Immobilization in Wall-Coated Flow Microreactors.
    Valikhani D; Bolivar JM; Nidetzky B
    Methods Mol Biol; 2020; 2100():243-257. PubMed ID: 31939128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.
    Bolivar JM; Tribulato MA; Petrasek Z; Nidetzky B
    Biotechnol Bioeng; 2016 Nov; 113(11):2342-9. PubMed ID: 27216813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of glucosyl glycerol by immobilized sucrose phosphorylase: Options for enzyme fixation on a solid support and application in microscale flow format.
    Bolivar JM; Luley-Goedl C; Leitner E; Sawangwan T; Nidetzky B
    J Biotechnol; 2017 Sep; 257():131-138. PubMed ID: 28161416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels.
    Valikhani D; Bolivar JM; Viefhues M; McIlroy DN; Vrouwe EX; Nidetzky B
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34641-34649. PubMed ID: 28921951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors.
    Bolivar JM; Valikhani D; Nidetzky B
    Biotechnol J; 2019 Mar; 14(3):e1800244. PubMed ID: 30091533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports.
    Bolivar JM; Nidetzky B
    Langmuir; 2012 Jul; 28(26):10040-9. PubMed ID: 22668007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a fully integrated falling film microreactor for gas-liquid-solid biotransformation with surface immobilized O2 -dependent enzyme.
    Bolivar JM; Krämer CE; Ungerböck B; Mayr T; Nidetzky B
    Biotechnol Bioeng; 2016 Sep; 113(9):1862-72. PubMed ID: 26927978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of microreactors with surface-immobilized biocatalysts for continuous transamination.
    Miložič N; Stojkovič G; Vogel A; Bouwes D; Žnidaršič-Plazl P
    N Biotechnol; 2018 Dec; 47():18-24. PubMed ID: 29758351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes.
    Thomsen MS; Nidetzky B
    Biotechnol J; 2009 Jan; 4(1):98-107. PubMed ID: 18618472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalysis in Continuous-Flow Microfluidic Reactors.
    Cardoso Marques MP; Lorente-Arevalo A; Bolivar JM
    Adv Biochem Eng Biotechnol; 2022; 179():211-246. PubMed ID: 33624135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Z basic2: design of a heterogeneous D-amino acid oxidase catalyst on porous glass.
    Bolivar JM; Nidetzky B
    Biotechnol Bioeng; 2012 Jun; 109(6):1490-8. PubMed ID: 22249953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving and unsinkable graphene sheets immobilized enzyme for microfluidic biocatalysis.
    Gong A; Zhu CT; Xu Y; Wang FQ; Tsabing DK; Wu FA; Wang J
    Sci Rep; 2017 Jun; 7(1):4309. PubMed ID: 28655888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the thermostability of sucrose phosphorylase by multipoint covalent immobilization.
    Cerdobbel A; Desmet T; De Winter K; Maertens J; Soetaert W
    J Biotechnol; 2010 Oct; 150(1):125-30. PubMed ID: 20691225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel enzymatic microreactor with Aspergillus oryzae β-galactosidase immobilized on silicon dioxide nanosprings.
    Schilke KF; Wilson KL; Cantrell T; Corti G; McIlroy DN; Kelly C
    Biotechnol Prog; 2010; 26(6):1597-605. PubMed ID: 20661927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oriented Coimmobilization of Oxidase and Catalase on Tailor-Made Ordered Mesoporous Silica.
    Bolivar JM; Gascon V; Marquez-Alvarez C; Blanco RM; Nidetzky B
    Langmuir; 2017 May; 33(20):5065-5076. PubMed ID: 28464607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of thermophilic enzymes in miniaturized flow reactors.
    Hickey AM; Marle L; McCreedy T; Watts P; Greenway GM; Littlechild JA
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1621-3. PubMed ID: 18031278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of controlled pore glass, silica gel and poraver for the immobilization of urease to determine urea in a flow injection conductimetric biosensor system.
    Limbut W; Thavarungkul P; Kanatharana P; Asawatreratanakul P; Limsakul C; Wongkittisuksa B
    Biosens Bioelectron; 2004 Mar; 19(8):813-21. PubMed ID: 15128100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of silica-derived nano-supporters on cellobiase after immobilization.
    Wang P; Hu X; Cook S; Hwang HM
    Appl Biochem Biotechnol; 2009 Jul; 158(1):88-96. PubMed ID: 18679593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable microstructured network for protein patterning on a plastic microfluidic channel: strategy and characterization of on-chip enzyme microreactors.
    Qu H; Wang H; Huang Y; Zhong W; Lu H; Kong J; Yang P; Liu B
    Anal Chem; 2004 Nov; 76(21):6426-33. PubMed ID: 15516137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.