These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31939140)

  • 1. Covalent Immobilization of Microbial Cells on Microchannel Surfaces.
    Stojkovič G; Žnidaršič-Plazl P
    Methods Mol Biol; 2020; 2100():417-426. PubMed ID: 31939140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of microreactors with surface-immobilized biocatalysts for continuous transamination.
    Miložič N; Stojkovič G; Vogel A; Bouwes D; Žnidaršič-Plazl P
    N Biotechnol; 2018 Dec; 47():18-24. PubMed ID: 29758351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Promises and the Challenges of Biotransformations in Microflow.
    Žnidaršič-Plazl P
    Biotechnol J; 2019 Aug; 14(8):e1800580. PubMed ID: 30945445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme Immobilization in Wall-Coated Flow Microreactors.
    Valikhani D; Bolivar JM; Nidetzky B
    Methods Mol Biol; 2020; 2100():243-257. PubMed ID: 31939128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demystifying the Flow: Biocatalytic Reaction Intensification in Microstructured Enzyme Reactors.
    Bolivar JM; Valikhani D; Nidetzky B
    Biotechnol J; 2019 Mar; 14(3):e1800244. PubMed ID: 30091533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.
    Bolivar JM; Tribulato MA; Petrasek Z; Nidetzky B
    Biotechnol Bioeng; 2016 Nov; 113(11):2342-9. PubMed ID: 27216813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels.
    Valikhani D; Bolivar JM; Viefhues M; McIlroy DN; Vrouwe EX; Nidetzky B
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34641-34649. PubMed ID: 28921951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioproduction of food additives hexanal and hexanoic acid in a microreactor.
    Šalić A; Pindrić K; Zelić B
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2273-84. PubMed ID: 24043452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes.
    Thomsen MS; Nidetzky B
    Biotechnol J; 2009 Jan; 4(1):98-107. PubMed ID: 18618472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of His
    Šketa B; Galman JL; Turner NJ; Žnidaršič-Plazl P
    N Biotechnol; 2024 Nov; 83():46-55. PubMed ID: 38960020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catechol Removal from Aqueous Media Using Laccase Immobilized in Different Macro- and Microreactor Systems.
    Tušek AJ; Šalić A; Zelić B
    Appl Biochem Biotechnol; 2017 Aug; 182(4):1575-1590. PubMed ID: 28116574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of the geometry of open channels in a layer-bed-type microfluidic immobilized enzyme reactor.
    Nagy C; Huszank R; Gaspar A
    Anal Bioanal Chem; 2021 Oct; 413(25):6321-6332. PubMed ID: 34378068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wall-Immobilized Biocatalyst vs. Packed Bed in Miniaturized Continuous Reactors: Performances and Scale-Up.
    Michaud M; Nonglaton G; Anxionnaz-Minvielle Z
    Chembiochem; 2024 Jun; 25(11):e202400086. PubMed ID: 38618870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocatalysis in Continuous-Flow Microfluidic Reactors.
    Cardoso Marques MP; Lorente-Arevalo A; Bolivar JM
    Adv Biochem Eng Biotechnol; 2022; 179():211-246. PubMed ID: 33624135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-functionalized polymer brush films on the inner wall of silicon-glass microreactors with tunable biocatalytic activity.
    Costantini F; Benetti EM; Reinhoudt DN; Huskens J; Vancso GJ; Verboom W
    Lab Chip; 2010 Dec; 10(24):3407-12. PubMed ID: 20941436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications.
    Polakovič M; Švitel J; Bučko M; Filip J; Neděla V; Ansorge-Schumacher MB; Gemeiner P
    Biotechnol Lett; 2017 May; 39(5):667-683. PubMed ID: 28181062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized biocatalytic process development and potential application in membrane separation: a review.
    Chakraborty S; Rusli H; Nath A; Sikder J; Bhattacharjee C; Curcio S; Drioli E
    Crit Rev Biotechnol; 2016; 36(1):43-58. PubMed ID: 25025272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow Bioreactors as Complementary Tools for Biocatalytic Process Intensification.
    Tamborini L; Fernandes P; Paradisi F; Molinari F
    Trends Biotechnol; 2018 Jan; 36(1):73-88. PubMed ID: 29054312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalysis with immobilized Escherichia coli.
    Zajkoska P; Rebroš M; Rosenberg M
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1441-55. PubMed ID: 23296498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.