BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31939181)

  • 1. Single-Stranded DNA Aptamers Against TNF and Their Potential Applications.
    Tao S; Song P; Zhang X; Zhang L; Chu CQ
    Methods Mol Biol; 2020; 2108():181-196. PubMed ID: 31939181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Screening and characterization of DNA aptamers with hTNF-alpha binding and neutralizing activity].
    Guo KT; Yan XR; Huang GJ; Xu CX; Chai YS; Zhang ZQ
    Sheng Wu Gong Cheng Xue Bao; 2003 Nov; 19(6):730-3. PubMed ID: 15971588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing a new dimerized anti human TNF-α aptamer with blocking activity.
    Mashayekhi K; Ganji A; Sankian M
    Biotechnol Prog; 2020 Jul; 36(4):e2969. PubMed ID: 31989789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide.
    Heiat M; Ranjbar R; Latifi AM; Rasaee MJ
    Peptides; 2016 Aug; 82():101-108. PubMed ID: 27298205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Cell-Specific Aptamers: Recent Advances and Insight into the Selection Procedures.
    Rahimizadeh K; AlShamaileh H; Fratini M; Chakravarthy M; Stephen M; Shigdar S; Veedu RN
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29186905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications.
    Hong KL; Sooter LJ
    Biomed Res Int; 2015; 2015():419318. PubMed ID: 26199940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-stranded DNA (ssDNA) production in DNA aptamer generation.
    Marimuthu C; Tang TH; Tominaga J; Tan SC; Gopinath SC
    Analyst; 2012 Mar; 137(6):1307-15. PubMed ID: 22314701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Efficient and Reliable DNA Aptamer Selection Using the Partitioning Capabilities of ddPCR: The Hi-Fi SELEX Method.
    Ang A; Ouellet E; Cheung KC; Haynes C
    Methods Mol Biol; 2018; 1768():531-554. PubMed ID: 29717463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of ssDNA aptamers for the sensitive detection of Salmonella typhimurium and Salmonella enteritidis.
    Park HC; Baig IA; Lee SC; Moon JY; Yoon MY
    Appl Biochem Biotechnol; 2014 Sep; 174(2):793-802. PubMed ID: 25096391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic Acid Aptamers as Emerging Tools for Diagnostics and Theranostics.
    Mutreja R; Baba SA; Navani NK
    Methods Mol Biol; 2019; 2054():201-221. PubMed ID: 31482458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated Discovery of Potent Bioactive anti-TNFα Aptamers by Microbead-Assisted Capillary Electrophoresis (MACE)-SELEX.
    Nagano M; Oguro T; Sawada R; Yoshitomi T; Yoshimoto K
    Chembiochem; 2021 Dec; 22(23):3341-3347. PubMed ID: 34549879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening of single-stranded DNA (ssDNA) aptamers against a zearalenone monoclonal antibody and development of a ssDNA-based enzyme-linked oligonucleotide assay for determination of zearalenone in corn.
    Wang YK; Zou Q; Sun JH; Wang HA; Sun X; Chen ZF; Yan YX
    J Agric Food Chem; 2015 Jan; 63(1):136-41. PubMed ID: 25485848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cost-effective evaluation of Aptamer candidates in SELEX-based Aptamer isolation.
    Wen K; Meng X; Lara K; Lin Q
    Talanta; 2024 Aug; 275():126103. PubMed ID: 38663069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carboxymethylcellulose enhances the production of single-stranded DNA aptamers generated by asymmetric PCR.
    Redcenko O; Draberova L; Draber P
    Anal Biochem; 2020 Jan; 589():113502. PubMed ID: 31704088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different methods for generation of single-stranded DNA for SELEX processes.
    Svobodová M; Pinto A; Nadal P; O' Sullivan CK
    Anal Bioanal Chem; 2012 Aug; 404(3):835-42. PubMed ID: 22733247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection.
    Tsao SM; Lai JC; Horng HE; Liu TC; Hong CY
    Sci Rep; 2017 Apr; 7():45478. PubMed ID: 28367958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aptamers and riboswitches: perspectives in biotechnology.
    Weigand JE; Suess B
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):229-36. PubMed ID: 19756582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and Characterization of Single-Stranded DNA Aptamers Binding Human B-Cell Surface Protein CD20 by Cell-SELEX.
    Haghighi M; Khanahmad H; Palizban A
    Molecules; 2018 Mar; 23(4):. PubMed ID: 29561802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Strand DNA-Like Oligonucleotide Aptamer Against Proprotein Convertase Subtilisin/Kexin 9 Using CE-SELEX: PCSK9 Targeting Selection.
    Sattari R; Palizban A; Khanahmad H
    Cardiovasc Drugs Ther; 2020 Aug; 34(4):475-485. PubMed ID: 32415571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.