BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31939210)

  • 1. Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes.
    Li M; Liu J; Deng M; Ge Z; Afshan N; Zuo X; Li Q
    Chempluschem; 2019 Apr; 84(4):323-327. PubMed ID: 31939210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells.
    Liang L; Li J; Li Q; Huang Q; Shi J; Yan H; Fan C
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7745-50. PubMed ID: 24827912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol Anchors Enable Efficient Binding and Intracellular Uptake of DNA Nanostructures.
    Whitehouse WL; Noble JE; Ryadnov MG; Howorka S
    Bioconjug Chem; 2019 Jul; 30(7):1836-1844. PubMed ID: 30821443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and biochemical insights on DNA structures in artificial and living systems.
    Chen N; Li J; Song H; Chao J; Huang Q; Fan C
    Acc Chem Res; 2014 Jun; 47(6):1720-30. PubMed ID: 24588263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Penetrating Peptide-Modified DNA Tetrahedron for Targeting Drug Delivery.
    Xia Z; Wang P; Liu X; Liu T; Yan Y; Yan J; Zhong J; Sun G; He D
    Biochemistry; 2016 Mar; 55(9):1326-31. PubMed ID: 26789283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA supersandwich assemblies as artificial receptors to mediate intracellular delivery of catalase for efficient ROS scavenging.
    Chen Q; Zhou S; Li C; Guo Q; Yang X; Huang J; Liu J; Wang K
    Chem Commun (Camb); 2019 Apr; 55(29):4242-4245. PubMed ID: 30900705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Biomedical Effects of the Self-Assembled Tetrahedral DNA Nanostructure on Living Cells.
    Peng Q; Shao XR; Xie J; Shi SR; Wei XQ; Zhang T; Cai XX; Lin YF
    ACS Appl Mater Interfaces; 2016 May; 8(20):12733-9. PubMed ID: 27153101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classifying Cell Types with DNA-Encoded Ligand-Receptor Interactions on the Cell Membrane.
    Zhang L; Wang F; Li Q; Wang L; Fan C; Li J; Zhu Y
    Nano Lett; 2020 May; 20(5):3521-3527. PubMed ID: 32223268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Neuronal Cell Uptake of Therapeutic Nucleic Acids with Tetrahedral DNA Nanostructures.
    Martins ASG; Reis SD; Benson E; Domingues MM; Cortinhas J; Vidal Silva JA; Santos SD; Santos NC; Pêgo AP; Moreno PMD
    Small; 2024 Feb; ():e2309140. PubMed ID: 38342712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and Biomimetic DNA Nanostructures on Lipid Membranes.
    Wu N; Chen F; Zhao Y; Yu X; Wei J; Zhao Y
    Langmuir; 2018 Dec; 34(49):14721-14730. PubMed ID: 30044097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Membrane Potential to Achieve Transmembrane Modification with an Artificial Receptor.
    Hatanaka W; Kawaguchi M; Sun X; Nagao Y; Ohshima H; Hashida M; Higuchi Y; Kishimura A; Katayama Y; Mori T
    Bioconjug Chem; 2017 Feb; 28(2):296-301. PubMed ID: 28052667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects.
    Yan J; Zhan X; Zhang Z; Chen K; Wang M; Sun Y; He B; Liang Y
    J Nanobiotechnology; 2021 Dec; 19(1):412. PubMed ID: 34876145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crossing Over: Nanostructures that Move Electrons and Ions across Cellular Membranes.
    Ajo-Franklin CM; Noy A
    Adv Mater; 2015 Oct; 27(38):5797-804. PubMed ID: 25914282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA nanostructures for exploring cell-cell communication.
    Wang Y; Xiong Y; Shi K; Effah CY; Song L; He L; Liu J
    Chem Soc Rev; 2024 Apr; 53(8):4020-4044. PubMed ID: 38444346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological Effect of Differently Sized Tetrahedral Framework Nucleic Acids: Endocytosis, Proliferation, Migration, and Biodistribution.
    Shi S; Li Y; Zhang T; Xiao D; Tian T; Chen T; Zhang Y; Li X; Lin Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):57067-57074. PubMed ID: 34802237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ generation of biocompatible amorphous calcium carbonate onto cell membrane to block membrane transport protein - A new strategy for cancer therapy via mimicking abnormal mineralization.
    Zhu L; Wang G; Shi W; Ma X; Yang X; Yang H; Guo Y; Yang L
    J Colloid Interface Sci; 2019 Apr; 541():339-347. PubMed ID: 30708249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-Driven ATP Transmembrane Transport Controlled by DNA Nanomachines.
    Li P; Xie G; Liu P; Kong XY; Song Y; Wen L; Jiang L
    J Am Chem Soc; 2018 Nov; 140(47):16048-16052. PubMed ID: 30372056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Cascade Signaling Network between Artificial Cells Switching Activity of Synthetic Transmembrane Channels.
    Yang Q; Guo Z; Liu H; Peng R; Xu L; Bi C; He Y; Liu Q; Tan W
    J Am Chem Soc; 2021 Jan; 143(1):232-240. PubMed ID: 33356224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme-Powered Tubular Microrobotic Jets as Bioinspired Micropumps for Active Transmembrane Drug Transport.
    Wang L; Guo P; Jin D; Peng Y; Sun X; Chen Y; Liu X; Chen W; Wang W; Yan X; Ma X
    ACS Nano; 2023 Mar; 17(5):5095-5107. PubMed ID: 36861648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.