These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31939283)

  • 1. Surface-Enhanced Infrared Absorption of Ligands on Colloidal Gold Nanowires through Resonant Coupling.
    Wang D; Wang X; Lin H; Wang B; Jiang J; Li Z
    Anal Chem; 2020 Mar; 92(5):3494-3498. PubMed ID: 31939283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanonails for surface-enhanced infrared absorption.
    Yin H; Li N; Si Y; Zhang H; Yang B; Wang J
    Nanoscale Horiz; 2020 Jul; 5(8):1200-1212. PubMed ID: 32578657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification of resonance Rayleigh scattering of gold nanoparticles by tweaking into nanowires: Bio-sensing of α-tocopherol by enhanced resonance Rayleigh scattering of curcumin capped gold nanowires through non-covalent interaction.
    El Kurdi R; Patra D
    Talanta; 2017 Jun; 168():82-90. PubMed ID: 28391869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver nanocrescents with infrared plasmonic properties as tunable substrates for surface enhanced infrared absorption spectroscopy.
    Bukasov R; Shumaker-Parry JS
    Anal Chem; 2009 Jun; 81(11):4531-5. PubMed ID: 19408957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires.
    Aleshire K; Pavlovetc IM; Collette R; Kong XT; Rack PD; Zhang S; Masiello DJ; Camden JP; Hartland GV; Kuno M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2288-2293. PubMed ID: 31964821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant Coupling between Molecular Vibrations and Localized Surface Plasmon Resonance of Faceted Metal Oxide Nanocrystals.
    Agrawal A; Singh A; Yazdi S; Singh A; Ong GK; Bustillo K; Johns RW; Ringe E; Milliron DJ
    Nano Lett; 2017 Apr; 17(4):2611-2620. PubMed ID: 28337921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple-resonant pad-rod nanoantennas for surface-enhanced infrared absorption spectroscopy.
    Yue W; Kravets V; Pu M; Wang C; Zhao Z; Hu Z
    Nanotechnology; 2019 Nov; 30(46):465206. PubMed ID: 31483763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS.
    Zhao Y; Chen G; Du Y; Xu J; Wu S; Qu Y; Zhu Y
    Nanoscale; 2014 Nov; 6(22):13754-60. PubMed ID: 25285780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced surface plasmon resonance by Au nanoparticles immobilized on a dielectric SiO2 layer on a gold surface.
    Jung J; Na K; Lee J; Kim KW; Hyun J
    Anal Chim Acta; 2009 Sep; 651(1):91-7. PubMed ID: 19733741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Au-enhanced surface plasmon resonance immunosensing.
    Lyon LA; Musick MD; Natan MJ
    Anal Chem; 1998 Dec; 70(24):5177-83. PubMed ID: 9868916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipitched Diffraction Gratings for Surface Plasmon Resonance-Enhanced Infrared Reflection Absorption Spectroscopy.
    Petefish JW; Hillier AC
    Anal Chem; 2015 Nov; 87(21):10862-70. PubMed ID: 26458177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas.
    Neubrech F; Huck C; Weber K; Pucci A; Giessen H
    Chem Rev; 2017 Apr; 117(7):5110-5145. PubMed ID: 28358482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the molecule-plasmon interactions in surface-enhanced infrared absorption spectroscopy.
    Yi J; You EM; Ding SY; Tian ZQ
    Natl Sci Rev; 2020 Jul; 7(7):1228-1238. PubMed ID: 34692147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells.
    Li K; Clime L; Tay L; Cui B; Geissler M; Veres T
    Anal Chem; 2008 Jul; 80(13):4945-50. PubMed ID: 18507399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classical Model of Surface Enhanced Infrared Absorption (SEIRA) Spectroscopy.
    Gao Y; Aspnes DE; Franzen S
    J Phys Chem A; 2022 Jan; 126(2):341-351. PubMed ID: 35005959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy.
    Dong L; Yang X; Zhang C; Cerjan B; Zhou L; Tseng ML; Zhang Y; Alabastri A; Nordlander P; Halas NJ
    Nano Lett; 2017 Sep; 17(9):5768-5774. PubMed ID: 28787169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
    Chong X; Zhang Y; Li E; Kim KJ; Ohodnicki PR; Chang CH; Wang AX
    ACS Sens; 2018 Jan; 3(1):230-238. PubMed ID: 29262684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling Resonances of Surface Plasmon in Gold Nanorod/Copper Chalcogenide Core-Shell Nanostructures and Their Enhanced Photothermal Effect.
    Li Y; Pan G; Liu Q; Ma L; Xie Y; Zhou L; Hao Z; Wang Q
    Chemphyschem; 2018 Jun; ():. PubMed ID: 29863808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules.
    Milekhin AG; Cherkasova O; Kuznetsov SA; Milekhin IA; Rodyakina EE; Latyshev AV; Banerjee S; Salvan G; Zahn DRT
    Beilstein J Nanotechnol; 2017; 8():975-981. PubMed ID: 28546892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.