BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31939525)

  • 1. Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model.
    Mamani JB; Marinho BS; Rego GNA; Nucci MP; Alvieri F; Santos RSD; Ferreira JVM; Oliveira FA; Gamarra LF
    Einstein (Sao Paulo); 2020; 18():eAO4954. PubMed ID: 31939525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model.
    Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF
    Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study.
    Rego GNA; Nucci MP; Mamani JB; Oliveira FA; Marti LC; Filgueiras IS; Ferreira JM; Real CC; Faria DP; Espinha PL; Fantacini DMC; Souza LEB; Covas DT; Buchpiguel CA; Gamarra LF
    Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32023985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.
    Minaei SE; Khoei S; Khoee S; Vafashoar F; Mahabadi VP
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():575-587. PubMed ID: 31029351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing the Effects of Magnetic Hyperthermia in 2D Cell Culture.
    Hannon G; Prina-Mello A
    Methods Mol Biol; 2023; 2645():251-261. PubMed ID: 37202625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (Carboxymethyl-stevioside)-coated magnetic dots for enhanced magnetic hyperthermia and improved glioblastoma treatment.
    Gupta R; Sharma D
    Colloids Surf B Biointerfaces; 2021 Sep; 205():111870. PubMed ID: 34034224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating.
    Sanz B; Calatayud MP; Torres TE; Fanarraga ML; Ibarra MR; Goya GF
    Biomaterials; 2017 Jan; 114():62-70. PubMed ID: 27846403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe
    Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S
    Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.
    Stocke NA; Sethi P; Jyoti A; Chan R; Arnold SM; Hilt JZ; Upreti M
    Biomaterials; 2017 Mar; 120():115-125. PubMed ID: 28056401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Efficacy of Magnetic Nanoparticle-Mediated Hyperthermia Using Trapezoidal Pulsed Electromagnetic Fields as an In Vitro Anticancer Treatment in Melanoma and Glioblastoma Multiforme Cell Lines.
    Souiade L; Domingo-Diez J; Alcaide C; Gámez B; Gámez L; Ramos M; Serrano Olmedo JJ
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitization of glioblastoma cancer cells to radiotherapy and magnetic hyperthermia by targeted temozolomide-loaded magnetite tri-block copolymer nanoparticles as a nanotheranostic agent.
    Minaei SE; Khoei S; Khoee S; Mahdavi SR
    Life Sci; 2022 Oct; 306():120729. PubMed ID: 35753439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia.
    Alphandéry E; Idbaih A; Adam C; Delattre JY; Schmitt C; Guyot F; Chebbi I
    Biomaterials; 2017 Oct; 141():210-222. PubMed ID: 28689117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of magnetoliposomes with encapsulated doxorubicin for integrated chemotherapy and hyperthermia of rat C6 glioma.
    Babincová N; Sourivong P; Babinec P; Bergemann C; Babincová M; Durdík Š
    Z Naturforsch C J Biosci; 2018 Jul; 73(7-8):265-271. PubMed ID: 29894307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual Role of Magnetic Nanoparticles as Intracellular Hotspots and Extracellular Matrix Disruptors Triggered by Magnetic Hyperthermia in 3D Cell Culture Models.
    Beola L; Asín L; Fratila RM; Herrero V; de la Fuente JM; Grazú V; Gutiérrez L
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44301-44313. PubMed ID: 30480993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma.
    Le Fèvre R; Durand-Dubief M; Chebbi I; Mandawala C; Lagroix F; Valet JP; Idbaih A; Adam C; Delattre JY; Schmitt C; Maake C; Guyot F; Alphandéry E
    Theranostics; 2017; 7(18):4618-4631. PubMed ID: 29158849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats.
    Yang Y; Tong C; Zhong J; Huang R; Tan W; Tan Z
    J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1827-1841. PubMed ID: 28914992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of combined effect of hyperthermia and ionizing radiation on cytotoxic damages induced by IUdR-loaded PCL-PEG-coated magnetic nanoparticles in spheroid culture of U87MG glioblastoma cell line.
    Rezaie P; Khoei S; Khoee S; Shirvalilou S; Mahdavi SR
    Int J Radiat Biol; 2018 Nov; 94(11):1027-1037. PubMed ID: 29985733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stimuli-responsive lipid-based magnetic nanovectors increase apoptosis in glioblastoma cells through synergic intracellular hyperthermia and chemotherapy.
    Tapeinos C; Marino A; Battaglini M; Migliorin S; Brescia R; Scarpellini A; De Julián Fernández C; Prato M; Drago F; Ciofani G
    Nanoscale; 2018 Dec; 11(1):72-88. PubMed ID: 30357214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.