BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31939956)

  • 1. Dramatic changes in the excited-state behaviour of the green fluorescent protein chromophore by a strong π-donating group through significantly lowering the excited-state potential energy surface with photoinduced intramolecular charge transfer.
    Chen YH; Sung R; Sung K
    Phys Chem Chem Phys; 2020 Jan; 22(4):2424-2428. PubMed ID: 31939956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Excited State Intramolecular Proton Transfer: An Alternative Model for Excited State Proton Transfer of Green Fluorescence Protein.
    Chen YH; Sung R; Sung K
    J Phys Chem A; 2018 Jul; 122(28):5931-5944. PubMed ID: 29965763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locally-excited (LE) versus charge-transfer (CT) excited state competition in a series of para-substituted neutral green fluorescent protein (GFP) chromophore models.
    Olsen S
    J Phys Chem B; 2015 Feb; 119(6):2566-75. PubMed ID: 25343562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden electronic excited state of enhanced green fluorescent protein.
    Hosoi H; Yamaguchi S; Mizuno H; Miyawaki A; Tahara T
    J Phys Chem B; 2008 Mar; 112(10):2761-3. PubMed ID: 18275187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Dynamics of a Green Fluorescent Protein Chromophore Analogue: Competition between Excited-State Proton Transfer and Torsional Relaxation.
    Chatterjee T; Lacombat F; Yadav D; Mandal M; Plaza P; Espagne A; Mandal PK
    J Phys Chem B; 2016 Sep; 120(36):9716-22. PubMed ID: 27548114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excited-State Proton-Transfer-Induced Trapping Enhances the Fluorescence Emission of a Locked GFP Chromophore.
    Liu XY; Chang XP; Xia SH; Cui G; Thiel W
    J Chem Theory Comput; 2016 Feb; 12(2):753-64. PubMed ID: 26744782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of thioflavin T torsional relaxation in the excited state.
    Stsiapura VI; Maskevich AA; Kuzmitsky VA; Turoverov KK; Kuznetsova IM
    J Phys Chem A; 2007 Jun; 111(22):4829-35. PubMed ID: 17497763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling Light-Induced Proton Transfer from the GFP Chromophore.
    Langeland J; Persen NW; Gruber E; Kiefer HV; Kabylda AM; Bochenkova AV; Andersen LH
    Chemphyschem; 2021 May; 22(9):833-841. PubMed ID: 33591586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast
    Gao A; Wang M; Ding J
    J Chem Phys; 2018 Aug; 149(7):074304. PubMed ID: 30134672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings.
    Lelimousin M; Adam V; Nienhaus GU; Bourgeois D; Field MJ
    J Am Chem Soc; 2009 Nov; 131(46):16814-23. PubMed ID: 19886627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the First Chromophore-Forming Residue on Photobleaching and Oxidative Photoconversion of EGFP and EYFP.
    Sen T; Mamontova AV; Titelmayer AV; Shakhov AM; Astafiev AA; Acharya A; Lukyanov KA; Krylov AI; Bogdanov AM
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31652505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Observation of Cascade of Photoinduced Ultrafast Intramolecular Charge Transfer Dynamics in Diphenyl Acetylene Derivatives: Via Solvation and Intramolecular Relaxation.
    Karunakaran V; Das S
    J Phys Chem B; 2016 Jul; 120(28):7016-23. PubMed ID: 27347705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intramolecular hydrogen bonding plays a crucial role in the photophysics and photochemistry of the GFP chromophore.
    Cui G; Lan Z; Thiel W
    J Am Chem Soc; 2012 Jan; 134(3):1662-72. PubMed ID: 22175658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission.
    Wu D; Guo WW; Liu XY; Cui G
    Chemphyschem; 2016 Aug; 17(15):2340-7. PubMed ID: 27128380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the Driving Force of the Excited-State Proton Shuttle in the Green Fluorescent Protein: A Time-Dependent Density Functional Theory (TD-DFT) Study of the Intrinsic Reaction Path.
    Petrone A; Cimino P; Donati G; Hratchian HP; Frisch MJ; Rega N
    J Chem Theory Comput; 2016 Oct; 12(10):4925-4933. PubMed ID: 27571168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Against the NEER principle: the third type of photochromism for GFP chromophore derivatives.
    Liao JW; Sung R; Sung K
    Phys Chem Chem Phys; 2021 Dec; 24(1):295-304. PubMed ID: 34889318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why does a para-amino group make the green fluorescent protein chromophore non-fluorescent: coherent intramolecular charge transfer reduces the Z/E-photoisomerization barrier.
    Chen YH; Sung R; Sung K
    Chem Commun (Camb); 2019 Aug; 55(61):8991-8994. PubMed ID: 31290874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning the excited-state dynamics of GFP-inspired imidazolone derivatives.
    Petkova I; Dobrikov G; Banerji N; Duvanel G; Perez R; Dimitrov V; Nikolov P; Vauthey E
    J Phys Chem A; 2010 Jan; 114(1):10-20. PubMed ID: 20000560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational relaxation as the driving force for wavelength conversion in the peridinin-chlorophyll a-protein.
    Götze JP; Karasulu B; Patil M; Thiel W
    Biochim Biophys Acta; 2015 Dec; 1847(12):1509-17. PubMed ID: 26231454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence and absence of excited state intramolecular charge transfer with the six isomers of dicyano-N,N-dimethylaniline and dicyano-(N-methyl-N-isopropyl)aniline.
    Galievsky VA; Druzhinin SI; Demeter A; Kovalenko SA; Senyushkina T; Mayer P; Zachariasse KA
    J Phys Chem A; 2011 Oct; 115(40):10823-45. PubMed ID: 21800869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.