These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31939964)

  • 1. Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy.
    Wagemann E; Wang Y; Das S; Mitra SK
    Phys Chem Chem Phys; 2020 Jan; 22(4):2488-2497. PubMed ID: 31939964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the wetting translucency of hexagonal boron nitride.
    Wagemann E; Wang Y; Das S; Mitra SK
    Phys Chem Chem Phys; 2020 Apr; 22(15):7710-7718. PubMed ID: 32215391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge Stabilities of Hexagonal Boron Nitride Nanoribbons: A First-Principles Study.
    Mukherjee R; Bhowmick S
    J Chem Theory Comput; 2011 Mar; 7(3):720-4. PubMed ID: 26596304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene nanoribbons grown in hBN stacks for high-performance electronics.
    Lyu B; Chen J; Wang S; Lou S; Shen P; Xie J; Qiu L; Mitchell I; Li C; Hu C; Zhou X; Watanabe K; Taniguchi T; Wang X; Jia J; Liang Q; Chen G; Li T; Wang S; Ouyang W; Hod O; Ding F; Urbakh M; Shi Z
    Nature; 2024 Apr; 628(8009):758-764. PubMed ID: 38538800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics.
    Kim KK; Lee HS; Lee YH
    Chem Soc Rev; 2018 Aug; 47(16):6342-6369. PubMed ID: 30043784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and stability of nanoscrolls composed of graphene and hexagonal boron nitride nanoribbons: insights from molecular dynamics simulations.
    Lima KAL; Ribeiro Júnior LA
    J Mol Model; 2023 Oct; 29(11):339. PubMed ID: 37837452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Homoepitaxy of Boron Nitride on Exfoliated Hexagonal Boron Nitride Flakes.
    Binder J; Dabrowska AK; Tokarczyk M; Rousseau A; Valvin P; Bozek R; Nogajewski K; Kowalski G; Pacuski W; Gil B; Cassabois G; Stepniewski R; Wysmolek A
    Nano Lett; 2024 Jun; 24(23):6990-6996. PubMed ID: 38818969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water Electric Field Induced Modulation of the Wetting of Hexagonal Boron Nitride: Insights from Multiscale Modeling of Many-Body Polarization.
    Luo S; Misra RP; Blankschtein D
    ACS Nano; 2024 Jan; 18(2):1629-1646. PubMed ID: 38169482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquids with Lower Wettability Can Exhibit Higher Friction on Hexagonal Boron Nitride: The Intriguing Role of Solid-Liquid Electrostatic Interactions.
    Govind Rajan A; Strano MS; Blankschtein D
    Nano Lett; 2019 Mar; 19(3):1539-1551. PubMed ID: 30694070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface etching and edge control of hexagonal boron nitride assisted by triangular Sn nanoplates.
    Yi H; Solís-Fernández P; Hibino H; Ago H
    Nanoscale Adv; 2022 Sep; 4(18):3786-3792. PubMed ID: 36133324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of substitutional defects on resonant tunneling diodes based on armchair graphene and boron nitride nanoribbons lateral heterojunctions.
    Sanaeepur M
    Beilstein J Nanotechnol; 2020; 11():688-694. PubMed ID: 32395399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride.
    Sagar TC; Chinthapenta V
    J Mol Model; 2020 Jul; 26(8):192. PubMed ID: 32620980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Dimensional Magnetic Conduction Channels across Zigzag Graphene Nanoribbon/Hexagonal Boron Nitride Heterojunctions.
    Pizzochero M; Tepliakov NV; Lischner J; Mostofi AA; Kaxiras E
    Nano Lett; 2024 Jun; 24(22):6521-6528. PubMed ID: 38788172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface energy and wettability of van der Waals structures.
    Annamalai M; Gopinadhan K; Han SA; Saha S; Park HJ; Cho EB; Kumar B; Patra A; Kim SW; Venkatesan T
    Nanoscale; 2016 Mar; 8(10):5764-70. PubMed ID: 26910437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-hBN non-van der Waals vertical heterostructures for four- electron oxygen reduction reaction.
    Rastogi PK; Sahoo KR; Thakur P; Sharma R; Bawari S; Podila R; Narayanan TN
    Phys Chem Chem Phys; 2019 Feb; 21(7):3942-3953. PubMed ID: 30706063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "White graphenes": boron nitride nanoribbons via boron nitride nanotube unwrapping.
    Zeng H; Zhi C; Zhang Z; Wei X; Wang X; Guo W; Bando Y; Golberg D
    Nano Lett; 2010 Dec; 10(12):5049-55. PubMed ID: 21028887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations.
    Stehle YY; Sang X; Unocic RR; Voylov D; Jackson RK; Smirnov S; Vlassiouk I
    Nano Lett; 2017 Dec; 17(12):7306-7314. PubMed ID: 29136386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Roughness Explains the Observed Water Contact Angle and Slip Length on 2D Hexagonal Boron Nitride.
    Kumar Verma A; Govind Rajan A
    Langmuir; 2022 Aug; 38(30):9210-9220. PubMed ID: 35866875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanically reconfigurable van der Waals devices via low-friction gold sliding.
    Barabas AZ; Sequeira I; Yang Y; Barajas-Aguilar AH; Taniguchi T; Watanabe K; Sanchez-Yamagishi JD
    Sci Adv; 2023 Apr; 9(14):eadf9558. PubMed ID: 37027469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the preferred morphology of hexagonal boron nitride domain structure on nickel from ReaxFF-based molecular dynamics simulations.
    Liu S; Comer J; van Duin ACT; van Duin DM; Liu B; Edgar JH
    Nanoscale; 2019 Mar; 11(12):5607-5616. PubMed ID: 30860524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.