These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 31939967)
1. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study. Yu L; Sun S; Ye X Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967 [TBL] [Abstract][Full Text] [Related]
2. The unique carrier mobility of monolayer Janus MoSSe nanoribbons: a first-principles study. Yin WJ; Liu Y; Wen B; Li XB; Chai YF; Wei XL; Ma S; Teobaldi G Dalton Trans; 2021 Jul; 50(29):10252-10260. PubMed ID: 34251008 [TBL] [Abstract][Full Text] [Related]
3. Lattice thermal conductivity of Janus MoSSe and WSSe monolayers. Qin H; Ren K; Zhang G; Dai Y; Zhang G Phys Chem Chem Phys; 2022 Aug; 24(34):20437-20444. PubMed ID: 35983909 [TBL] [Abstract][Full Text] [Related]
4. Stacking engineering induced Z-scheme MoSSe/WSSe heterostructure for photocatalytic water splitting. Ren L; Liu Z; Ma Z; Ren K; Cui Z; Mu W Front Chem; 2024; 12():1425306. PubMed ID: 39006489 [TBL] [Abstract][Full Text] [Related]
5. Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study. Sun N; Wang M; Quhe R; Liu Y; Liu W; Guo Z; Ye H Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947791 [TBL] [Abstract][Full Text] [Related]
6. The unique photoelectronic properties of the two-dimensional Janus MoSSe/WSSe superlattice: a first-principles study. Zhang H; Deng D; Zou DF; Li XB; Tang ZK; Wei XL; Ge QX; Yin WJ Dalton Trans; 2022 Nov; 51(42):16102-16110. PubMed ID: 36217903 [TBL] [Abstract][Full Text] [Related]
7. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides. Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211 [TBL] [Abstract][Full Text] [Related]
8. Electronic and optical properties of two-dimensional heterostructures based on Janus XSSe (X = Mo, W) and Mg(OH) Lou J; Ren K; Huang Z; Huo W; Zhu Z; Yu J RSC Adv; 2021 Sep; 11(47):29576-29584. PubMed ID: 35479544 [TBL] [Abstract][Full Text] [Related]
9. The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study. Guo W; Ge X; Sun S; Xie Y; Ye X Phys Chem Chem Phys; 2020 Mar; 22(9):4946-4956. PubMed ID: 32073069 [TBL] [Abstract][Full Text] [Related]
10. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe. Li F; Wei W; Zhao P; Huang B; Dai Y J Phys Chem Lett; 2017 Dec; 8(23):5959-5965. PubMed ID: 29169238 [TBL] [Abstract][Full Text] [Related]
11. The mirror asymmetry induced nontrivial properties of polar WSSe/MoSSe heterostructures. Wang Y; Wei W; Huang B; Dai Y J Phys Condens Matter; 2019 Mar; 31(12):125003. PubMed ID: 30654357 [TBL] [Abstract][Full Text] [Related]
12. Emergence of superconductivity by intercalation of alkali metals and alkaline earth metals in Janus transition-metal dichalcogenide heterostructures. Er-Rahmany S; Loulidi M; El Kenz A; Benyoussef A; Balli M; Azzouz M Phys Chem Chem Phys; 2024 Oct; 26(38):24881-24893. PubMed ID: 39291617 [TBL] [Abstract][Full Text] [Related]
13. First-principles investigation of potential water-splitting photocatalysts and photovoltaic materials based on Janus transition-metal dichalcogenide/WSe Ayele ST; Obodo KO; Asres GA RSC Adv; 2022 Nov; 12(49):31518-31524. PubMed ID: 36380918 [TBL] [Abstract][Full Text] [Related]
14. Excitonic Dynamics in Janus MoSSe and WSSe Monolayers. Zheng T; Lin YC; Yu Y; Valencia-Acuna P; Puretzky AA; Torsi R; Liu C; Ivanov IN; Duscher G; Geohegan DB; Ni Z; Xiao K; Zhao H Nano Lett; 2021 Jan; 21(2):931-937. PubMed ID: 33405934 [TBL] [Abstract][Full Text] [Related]
15. The dimensional and hydrogenating effect on the electronic properties of ZnSe nanomaterials: a computational investigation. Lv X; Li F; Gong J; Chen Z Phys Chem Chem Phys; 2018 Oct; 20(37):24453-24464. PubMed ID: 30221293 [TBL] [Abstract][Full Text] [Related]
16. Electronic structures and transport properties of SnS-SnSe nanoribbon lateral heterostructures. Yang Y; Zhou Y; Luo Z; Guo Y; Rao D; Yan X Phys Chem Chem Phys; 2019 May; 21(18):9296-9301. PubMed ID: 30964129 [TBL] [Abstract][Full Text] [Related]
17. Emergence of metallic states at 2D MoSSe/GaAs Janus interface: a DFT study. Albar A; Aravindh SA J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34450605 [TBL] [Abstract][Full Text] [Related]
18. Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons. Chen W; Li Y; Yu G; Li CZ; Zhang SB; Zhou Z; Chen Z J Am Chem Soc; 2010 Feb; 132(5):1699-705. PubMed ID: 20085366 [TBL] [Abstract][Full Text] [Related]
19. Magnetism and perfect spin filtering in pristine MgCl Vasconcelos R; Paura ENC; Machado de Macedo LG; Gargano R Phys Chem Chem Phys; 2022 Feb; 24(5):3370-3378. PubMed ID: 35067691 [TBL] [Abstract][Full Text] [Related]
20. Bilayers of Janus WSSe: monitoring the stacking type via the vibrational spectrum. Kandemir A; Sahin H Phys Chem Chem Phys; 2018 Jun; 20(25):17380-17386. PubMed ID: 29905346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]