These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31940405)
1. A scoping review of importation and predictive models related to vector-borne diseases, pathogens, reservoirs, or vectors (1999-2016). Sadeghieh T; Waddell LA; Ng V; Hall A; Sargeant J PLoS One; 2020; 15(1):e0227678. PubMed ID: 31940405 [TBL] [Abstract][Full Text] [Related]
2. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Kulkarni MA; Duguay C; Ost K Global Health; 2022 Jan; 18(1):1. PubMed ID: 34980187 [TBL] [Abstract][Full Text] [Related]
3. Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in Nepal--A Systematic Synthesis of Literature. Dhimal M; Ahrens B; Kuch U PLoS One; 2015; 10(6):e0129869. PubMed ID: 26086887 [TBL] [Abstract][Full Text] [Related]
4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
5. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool. Huang Z; Das A; Qiu Y; Tatem AJ Int J Health Geogr; 2012 Aug; 11():33. PubMed ID: 22892045 [TBL] [Abstract][Full Text] [Related]
6. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus) influxes and survival from Vietnam rather than Japan. Lee SH; Nam KW; Jeong JY; Yoo SJ; Koh YS; Lee S; Heo ST; Seong SY; Lee KH PLoS One; 2013; 8(7):e68512. PubMed ID: 23894312 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America. López MS; Müller GV; Sione WF Spat Spatiotemporal Epidemiol; 2018 Aug; 26():35-93. PubMed ID: 30390933 [TBL] [Abstract][Full Text] [Related]
8. The use of environmental data in descriptive and predictive models of vector-borne disease in North America. Kiryluk HD; Beard CB; Holcomb KM J Med Entomol; 2024 May; 61(3):595-602. PubMed ID: 38431876 [TBL] [Abstract][Full Text] [Related]
9. [Changes in range of mosquito-borne diseases affected by global climatic fluctuations]. Rydzanicz K; Kiewra D; Lonc E Wiad Parazytol; 2006; 52(2):73-83. PubMed ID: 17120987 [TBL] [Abstract][Full Text] [Related]
10. Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Eder M; Cortes F; Teixeira de Siqueira Filha N; Araújo de França GV; Degroote S; Braga C; Ridde V; Turchi Martelli CM Infect Dis Poverty; 2018 Sep; 7(1):90. PubMed ID: 30173661 [TBL] [Abstract][Full Text] [Related]
12. Vector-Borne diseases in Egypt: Present status and accelerating toward elimination. Eassa SM; Abd El-Wahab EW J Vector Borne Dis; 2022; 59(2):127-138. PubMed ID: 36124478 [TBL] [Abstract][Full Text] [Related]
13. Editorial: Climate Change and the Spread of Vector-Borne Diseases, Including Dengue, Malaria, Lyme Disease, and West Nile Virus Infection. Parums DV Med Sci Monit; 2024 Jan; 29():e943546. PubMed ID: 38161310 [TBL] [Abstract][Full Text] [Related]
15. Impact, economic evaluation, and sustainability of integrated vector management in urban settings to prevent vector-borne diseases: a scoping review. Marcos-Marcos J; Olry de Labry-Lima A; Toro-Cardenas S; Lacasaña M; Degroote S; Ridde V; Bermudez-Tamayo C Infect Dis Poverty; 2018 Sep; 7(1):83. PubMed ID: 30173675 [TBL] [Abstract][Full Text] [Related]
16. Pathogens, reservoirs, and vectors involved in the transmission of vector-borne and zoonotic diseases in a Colombian region. Carrasquilla MC; Ortiz MI; Amórtegui-Hernández D; García-Restrepo S; León C; Méndez-Cardona S; González C Braz J Microbiol; 2023 Jun; 54(2):1145-1156. PubMed ID: 36828985 [TBL] [Abstract][Full Text] [Related]
17. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Gubler DJ; Reiter P; Ebi KL; Yap W; Nasci R; Patz JA Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):223-33. PubMed ID: 11359689 [TBL] [Abstract][Full Text] [Related]
18. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. Russell RC; Currie BJ; Lindsay MD; Mackenzie JS; Ritchie SA; Whelan PI Med J Aust; 2009 Mar; 190(5):265-8. PubMed ID: 19296793 [TBL] [Abstract][Full Text] [Related]
19. Impact of past and on-going changes on climate and weather on vector-borne diseases transmission: a look at the evidence. Fouque F; Reeder JC Infect Dis Poverty; 2019 Jun; 8(1):51. PubMed ID: 31196187 [TBL] [Abstract][Full Text] [Related]
20. Forecasting deep learning-based risk assessment of vector-borne diseases using hybrid methodology. Nanda AK; Thilagavathy R; Gayatri Devi GSK; Chaturvedi A; Jalda CS; Inthiyaz S Technol Health Care; 2024; 32(5):3341-3361. PubMed ID: 38968030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]