These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31940412)

  • 1. Wind energy development and wildlife conservation in Lithuania: A mapping tool for conflict assessment.
    Morkūnė R; Marčiukaitis M; Jurkin V; Gecevičius G; Morkūnas J; Raudonikis L; Markevičius A; Narščius A; Gasiūnaitė ZR
    PLoS One; 2020; 15(1):e0227735. PubMed ID: 31940412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States.
    Choi DY; Wittig TW; Kluever BM
    PLoS One; 2020; 15(8):e0238034. PubMed ID: 32857780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing an automated risk management tool to minimize bird and bat mortality at wind facilities.
    Robinson Willmott J; Forcey GM; Hooton LA
    Ambio; 2015 Nov; 44 Suppl 4(Suppl 4):557-71. PubMed ID: 26508344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evidence for the effect of small wind turbine proximity and operation on bird and bat activity.
    Minderman J; Pendlebury CJ; Pearce-Higgins JW; Park KJ
    PLoS One; 2012; 7(7):e41177. PubMed ID: 22859969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms.
    Desholm M
    J Environ Manage; 2009 Jun; 90(8):2672-9. PubMed ID: 19299065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: a case study with bats in the North of Portugal.
    Amorim F; Carvalho SB; Honrado J; Rebelo H
    PLoS One; 2014; 9(1):e87291. PubMed ID: 24475265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind farm facilities in Germany kill noctule bats from near and far.
    Lehnert LS; Kramer-Schadt S; Schönborn S; Lindecke O; Niermann I; Voigt CC
    PLoS One; 2014; 9(8):e103106. PubMed ID: 25118805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.
    Belaire JA; Kreakie BJ; Keitt T; Minor E
    Conserv Biol; 2014 Apr; 28(2):541-50. PubMed ID: 24372936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographic origins and population genetics of bats killed at wind-energy facilities.
    Pylant CL; Nelson DM; Fitzpatrick MC; Gates JE; Keller SR
    Ecol Appl; 2016 Jul; 26(5):1381-1395. PubMed ID: 27755755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-construction bird and bat fatality monitoring studies at wind energy projects in Latin America: A summary and review.
    Agudelo MS; Mabee TJ; Palmer R; Anderson R
    Heliyon; 2021 Jun; 7(6):e07251. PubMed ID: 34189305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating wind-turbine-caused bird and bat fatality when zero carcasses are observed.
    Huso MM; Dalthorp D; Dail D; Madsen L
    Ecol Appl; 2015 Jul; 25(5):1213-25. PubMed ID: 26485950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consolidating the State of Knowledge: A Synoptical Review of Wind Energy's Wildlife Effects.
    Schuster E; Bulling L; Köppel J
    Environ Manage; 2015 Aug; 56(2):300-31. PubMed ID: 25910869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.
    Thaxter CB; Buchanan GM; Carr J; Butchart SHM; Newbold T; Green RE; Tobias JA; Foden WB; O'Brien S; Pearce-Higgins JW
    Proc Biol Sci; 2017 Sep; 284(1862):. PubMed ID: 28904135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considerations for upscaling individual effects of wind energy development towards population-level impacts on wildlife.
    May R; Masden EA; Bennet F; Perron M
    J Environ Manage; 2019 Jan; 230():84-93. PubMed ID: 30273787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human-wildlife conflicts in the aerial habitat: Wind farms are just the beginning.
    Werber Y
    Sci Prog; 2024; 107(1):368504241231157. PubMed ID: 38373435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited accessibility and bias in wildlife-wind energy knowledge: A bilingual systematic review of a globally distributed bird group.
    Fernández-Bellon D
    Sci Total Environ; 2020 Oct; 737():140238. PubMed ID: 32783846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Industrial wind turbine post-construction bird and bat monitoring: A policy framework for Canada.
    Parisé J; Walker TR
    J Environ Manage; 2017 Oct; 201():252-259. PubMed ID: 28672197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Informing wind energy development: Land cover and topography predict occupancy for Arizona bats.
    Starbuck CA; Dickson BG; Chambers CL
    PLoS One; 2022; 17(6):e0268573. PubMed ID: 35657796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of development of wind energy and associated changes in land use on bird densities in upland areas.
    Fernández-Bellon D; Wilson MW; Irwin S; O'Halloran J
    Conserv Biol; 2019 Apr; 33(2):413-422. PubMed ID: 30346052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecological impact assessments fail to reduce risk of bat casualties at wind farms.
    Lintott PR; Richardson SM; Hosken DJ; Fensome SA; Mathews F
    Curr Biol; 2016 Nov; 26(21):R1135-R1136. PubMed ID: 27825446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.