These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 31940517)
1. Compact Optical Neural Probes With Up to 20 Integrated Thin-Film μLEDs Applied in Acute Optogenetic Studies. Ayub S; David F; Klein E; Borel M; Paul O; Gentet LJ; Ruther P IEEE Trans Biomed Eng; 2020 Sep; 67(9):2603-2615. PubMed ID: 31940517 [TBL] [Abstract][Full Text] [Related]
2. High Density, Double-Sided, Flexible Optoelectronic Neural Probes With Embedded μLEDs. Reddy JW; Kimukin I; Stewart LT; Ahmed Z; Barth AL; Towe E; Chamanzar M Front Neurosci; 2019; 13():745. PubMed ID: 31456654 [TBL] [Abstract][Full Text] [Related]
3. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies. Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702 [TBL] [Abstract][Full Text] [Related]
4. High-Density μLED-Based Optical Cochlear Implant With Improved Thermomechanical Behavior. Klein E; Gossler C; Paul O; Ruther P Front Neurosci; 2018; 12():659. PubMed ID: 30327585 [TBL] [Abstract][Full Text] [Related]
5. Design and Fabrication of Implantable Neural Probes with Monolithically Integrated Light-Emitting Diodes for Optogenetic Applications. Sung HK; Lee HK; Wang C; Kim NY J Nanosci Nanotechnol; 2017 Apr; 17(4):2582-584. PubMed ID: 29658691 [TBL] [Abstract][Full Text] [Related]
6. Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe. McAlinden N; Gu E; Dawson MD; Sakata S; Mathieson K Front Neural Circuits; 2015; 9():25. PubMed ID: 26074778 [TBL] [Abstract][Full Text] [Related]
7. Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Wu F; Stark E; Ku PC; Wise KD; Buzsáki G; Yoon E Neuron; 2015 Dec; 88(6):1136-1148. PubMed ID: 26627311 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes. Kinsky NR; Vöröslakos M; Ruiz JRL; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K bioRxiv; 2023 Feb; ():. PubMed ID: 36798252 [TBL] [Abstract][Full Text] [Related]
9. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Scharf R; Tsunematsu T; McAlinden N; Dawson MD; Sakata S; Mathieson K Sci Rep; 2016 Jun; 6():28381. PubMed ID: 27334849 [TBL] [Abstract][Full Text] [Related]
10. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. Schwaerzle M; Elmlinger P; Paul O; Ruther P Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5252-5. PubMed ID: 25571178 [TBL] [Abstract][Full Text] [Related]
11. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
12. HectoSTAR μLED Optoelectrodes for Large-Scale, High-Precision In Vivo Opto-Electrophysiology. Vöröslakos M; Kim K; Slager N; Ko E; Oh S; Parizi SS; Hendrix B; Seymour JP; Wise KD; Buzsáki G; Fernández-Ruiz A; Yoon E Adv Sci (Weinh); 2022 Jun; 9(18):e2105414. PubMed ID: 35451232 [TBL] [Abstract][Full Text] [Related]
14. A High-Resolution Opto-Electrophysiology System With a Miniature Integrated Headstage. Mendrela AE; Kim K; English D; McKenzie S; Seymour JP; Buzsaki G; Yoon E IEEE Trans Biomed Circuits Syst; 2018 Jul; ():. PubMed ID: 30010600 [TBL] [Abstract][Full Text] [Related]
15. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Kwon KY; Lee HM; Ghovanloo M; Weber A; Li W Front Syst Neurosci; 2015; 9():69. PubMed ID: 25999823 [TBL] [Abstract][Full Text] [Related]
16. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. McAlinden N; Massoubre D; Richardson E; Gu E; Sakata S; Dawson MD; Mathieson K Opt Lett; 2013 Mar; 38(6):992-4. PubMed ID: 23503284 [TBL] [Abstract][Full Text] [Related]
17. Performance comparison of flip-chip blue-light microLEDs with various passivation. Hsu YH; Lin XD; Lin YH; Wuu DS; Horng RH Discov Nano; 2024 Aug; 19(1):129. PubMed ID: 39150592 [TBL] [Abstract][Full Text] [Related]
18. Size-dependent optoelectrical properties of 365 nm ultraviolet light-emitting diodes. Asad M; Li Q; Sachdev M; Wong WS Nanotechnology; 2019 Dec; 30(50):504001. PubMed ID: 31490780 [TBL] [Abstract][Full Text] [Related]
19. A Direct Epitaxial Approach To Achieving Ultrasmall and Ultrabright InGaN Micro Light-Emitting Diodes (μLEDs). Bai J; Cai Y; Feng P; Fletcher P; Zhao X; Zhu C; Wang T ACS Photonics; 2020 Feb; 7(2):411-415. PubMed ID: 32296730 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous electrophysiology and optogenetic perturbation of the same neurons in chronically implanted animals using μLED silicon probes. Kinsky NR; Vöröslakos M; Lopez Ruiz JR; Watkins de Jong L; Slager N; McKenzie S; Yoon E; Diba K STAR Protoc; 2023 Dec; 4(4):102570. PubMed ID: 37729059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]