These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 31940539)

  • 1. A Recurrent Neural Network for Particle Tracking in Microscopy Images Using Future Information, Track Hypotheses, and Multiple Detections.
    Spilger R; Imle A; Lee JY; Muller B; Fackler OT; Bartenschlager R; Rohr K
    IEEE Trans Image Process; 2020 Jan; ():. PubMed ID: 31940539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep probabilistic tracking of particles in fluorescence microscopy images.
    Spilger R; Lee JY; Chagin VO; Schermelleh L; Cardoso MC; Bartenschlager R; Rohr K
    Med Image Anal; 2021 Aug; 72():102128. PubMed ID: 34229189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data fusion and smoothing for probabilistic tracking of viral structures in fluorescence microscopy images.
    Ritter C; Wollmann T; Lee JY; Imle A; Müller B; Fackler OT; Bartenschlager R; Rohr K
    Med Image Anal; 2021 Oct; 73():102168. PubMed ID: 34340105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-detector fusion and Bayesian smoothing for tracking viral and chromatin structures.
    Ritter C; Lee JY; Pham MT; Pabba MK; Cardoso MC; Bartenschlager R; Rohr K
    Med Image Anal; 2024 Oct; 97():103227. PubMed ID: 38897031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple dense particle tracking in fluorescence microscopy images based on multidimensional assignment.
    Feng L; Xu Y; Yang Y; Zheng X
    J Struct Biol; 2011 Feb; 173(2):219-28. PubMed ID: 21073957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking multiple particles in fluorescence time-lapse microscopy images via probabilistic data association.
    Godinez WJ; Rohr K
    IEEE Trans Med Imaging; 2015 Feb; 34(2):415-32. PubMed ID: 25252280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy.
    Smal I; Meijering E
    Med Image Anal; 2015 Aug; 24(1):163-189. PubMed ID: 26176413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data Association for Multi-Object Tracking via Deep Neural Networks.
    Yoon K; Kim DY; Yoon YC; Jeon M
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30700017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking Virus Particles in Fluorescence Microscopy Images Using Multi-Scale Detection and Multi-Frame Association.
    Jaiswal A; Godinez WJ; Eils R; Lehmann MJ; Rohr K
    IEEE Trans Image Process; 2015 Nov; 24(11):4122-36. PubMed ID: 26208342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences.
    Godinez WJ; Lampe M; Wörz S; Müller B; Eils R; Rohr K
    Med Image Anal; 2009 Apr; 13(2):325-42. PubMed ID: 19223219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular particles tracking in time-lapse confocal microscopy images.
    Li S; Luby-Phelps K; Zhang B; Wu X; Gao J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5973-6. PubMed ID: 22255700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bidirectional registration neural network for cardiac motion tracking using cine MRI images.
    Lu J; Jin R; Wang M; Song E; Ma G
    Comput Biol Med; 2023 Jun; 160():107001. PubMed ID: 37187138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic improvement of deep learning-based cell segmentation in time-lapse microscopy by neural architecture search.
    Zhu Y; Meijering E
    Bioinformatics; 2021 Dec; 37(24):4844-4850. PubMed ID: 34329376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning method for data association in particle tracking.
    Yao Y; Smal I; Grigoriev I; Akhmanova A; Meijering E
    Bioinformatics; 2020 Dec; 36(19):4935-4941. PubMed ID: 32879934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient brain tumor image classifier by combining multi-pathway cascaded deep neural network and handcrafted features in MR images.
    Bal A; Banerjee M; Chaki R; Sharma P
    Med Biol Eng Comput; 2021 Aug; 59(7-8):1495-1527. PubMed ID: 34184181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An active particle-based tracking framework for 2D and 3D time-lapse microscopy images.
    Hossain MJ; Whelan PF; Czirok A; Ghita O
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6613-8. PubMed ID: 22255855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Piecewise-Stationary Motion Modeling and Iterative Smoothing to Track Heterogeneous Particle Motions in Dense Environments.
    Roudot P; Liya Ding ; Jaqaman K; Kervrann C; Danuser G
    IEEE Trans Image Process; 2017 Nov; 26(11):5395-5410. PubMed ID: 29388914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast deep neural correspondence for tracking and identifying neurons in
    Yu X; Creamer MS; Randi F; Sharma AK; Linderman SW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34259623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review for cell and particle tracking on microscopy images using algorithms and deep learning technologies.
    Cheng HJ; Hsu CH; Hung CL; Lin CY
    Biomed J; 2022 Jun; 45(3):465-471. PubMed ID: 34628059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral Pedestrian Tracking Using a Camera and LiDAR Sensors on a Moving Vehicle.
    Dimitrievski M; Veelaert P; Philips W
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.