BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31940727)

  • 21. Limited prospects for future alpine treeline advance in the Canadian Rocky Mountains.
    Davis EL; Gedalof Z
    Glob Chang Biol; 2018 Oct; 24(10):4489-4504. PubMed ID: 29856111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altitudinal disparity in growth of Dahurian larch (Larix gmelinii Rupr.) in response to recent climate change in northeast China.
    Bai X; Zhang X; Li J; Duan X; Jin Y; Chen Z
    Sci Total Environ; 2019 Jun; 670():466-477. PubMed ID: 30904658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contrasting responses to climate change at Himalayan treelines revealed by population demographics of two dominant species.
    Mainali K; Shrestha BB; Sharma RK; Adhikari A; Gurarie E; Singer M; Parmesan C
    Ecol Evol; 2020 Feb; 10(3):1209-1222. PubMed ID: 32076508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Growth response of coniferous trees to climate change in the Qinling Mountains, China].
    Bai YY; Han YJ; Wang KK; Liu B
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3715-3723. PubMed ID: 34676734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tree demography suggests multiple directions and drivers for species range shifts in mountains of Northeastern United States.
    Wason JW; Dovciak M
    Glob Chang Biol; 2017 Aug; 23(8):3335-3347. PubMed ID: 27935175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased stem density and competition may diminish the positive effects of warming at alpine treeline.
    Wang Y; Pederson N; Ellison AM; Buckley HL; Case BS; Liang E; Julio Camarero J
    Ecology; 2016 Jul; 97(7):1668-1679. PubMed ID: 27859171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Density-dependent species interactions modulate alpine treeline shifts.
    Zheng X; Babst F; Camarero JJ; Li X; Lu X; Gao S; Sigdel SR; Wang Y; Zhu H; Liang E
    Ecol Lett; 2024 Apr; 27(4):e14403. PubMed ID: 38577961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.
    Rehm EM; Feeley KJ
    Ecology; 2015 Jul; 96(7):1856-65. PubMed ID: 26378308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Climate warming and the recent treeline shift in the European alps: the role of geomorphological factors in high-altitude sites.
    Leonelli G; Pelfini M; di Cella UM; Garavaglia V
    Ambio; 2011 May; 40(3):264-73. PubMed ID: 21644455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Warming and CO2 enrichment modified the ecophysiological responses of Dahurian larch and Mongolia pine during the past century in the permafrost of northeastern China.
    Liu X; Zhao L; Voelker S; Xu G; Zeng X; Zhang X; Zhang L; Sun W; Zhang Q; Wu G; Li X
    Tree Physiol; 2019 Jan; 39(1):88-103. PubMed ID: 29920609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.
    Harsch MA; HilleRisLambers J
    PLoS One; 2016; 11(7):e0159184. PubMed ID: 27447834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon dynamics in the deciduous broadleaf tree Erman's birch (Betula ermanii) at the subalpine treeline on Changbai Mountain, Northeast China.
    Wang QW; Qi L; Zhou W; Liu CG; Yu D; Dai L
    Am J Bot; 2018 Jan; 105(1):42-49. PubMed ID: 29532922
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Moisture availability limits subalpine tree establishment.
    Andrus RA; Harvey BJ; Rodman KC; Hart SJ; Veblen TT
    Ecology; 2018 Mar; 99(3):567-575. PubMed ID: 29469981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction.
    García-Robledo C; Kuprewicz EK; Staines CL; Erwin TL; Kress WJ
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):680-5. PubMed ID: 26729867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation.
    Li MH; Xiao WF; Wang SG; Cheng GW; Cherubini P; Cai XH; Liu XL; Wang XD; Zhu WZ
    Tree Physiol; 2008 Aug; 28(8):1287-96. PubMed ID: 18519260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are treelines advancing? A global meta-analysis of treeline response to climate warming.
    Harsch MA; Hulme PE; McGlone MS; Duncan RP
    Ecol Lett; 2009 Oct; 12(10):1040-9. PubMed ID: 19682007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Warming and provenance limit tree recruitment across and beyond the elevation range of subalpine forest.
    Kueppers LM; Conlisk E; Castanha C; Moyes AB; Germino MJ; de Valpine P; Torn MS; Mitton JB
    Glob Chang Biol; 2017 Jun; 23(6):2383-2395. PubMed ID: 27976819
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature increase and frost decrease driving upslope elevational range shifts in Alpine grouse and hares.
    Schai-Braun SC; Jenny H; Ruf T; Hackländer K
    Glob Chang Biol; 2021 Dec; 27(24):6602-6614. PubMed ID: 34582611
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A cool experimental approach to explain elevational treelines, but can it explain them?
    Bader MY; Loranger H; Zotz G
    Am J Bot; 2014 Sep; 101(9):1403-8. PubMed ID: 25253701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seedling transplants reveal species-specific responses of high-elevation tropical treeline trees to climate change.
    Rehm EM; Feeley KJ
    Oecologia; 2016 Aug; 181(4):1233-42. PubMed ID: 27071667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.