These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
425 related articles for article (PubMed ID: 31940778)
1. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique. Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778 [TBL] [Abstract][Full Text] [Related]
2. A Hybrid Piezoelectric and Electromagnetic Broadband Harvester with Double Cantilever Beams. Jiang B; Zhu F; Yang Y; Zhu J; Yang Y; Yuan M Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837940 [TBL] [Abstract][Full Text] [Related]
3. Design and Development of a 2 × 2 Array Piezoelectric-Electromagnetic Hybrid Energy Harvester. Han B; Zhang S; Liu J; Jiang Y Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630218 [TBL] [Abstract][Full Text] [Related]
4. A Magnetically Coupled Piezoelectric-Electromagnetic Low-Frequency Multidirection Hybrid Energy Harvester. Zhu Y; Zhang Z; Zhang P; Tan Y Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630228 [TBL] [Abstract][Full Text] [Related]
5. Development of enhanced piezoelectric energy harvester induced by human motion. Minami Y; Nakamachi E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1627-30. PubMed ID: 23366218 [TBL] [Abstract][Full Text] [Related]
6. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body. Li X; Bi C; Li Z; Liu B; Wang T; Zhang S Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414 [TBL] [Abstract][Full Text] [Related]
7. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts. Rosso M; Nastro A; Baù M; Ferrari M; Ferrari V; Corigliano A; Ardito R Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957468 [TBL] [Abstract][Full Text] [Related]
8. Research and analysis of an energy harvester of piezoelectric cantilever beam based on nonlinear magnetic action. Gu X; He L; Yu G; Liu L; Zhou J; Cheng G Rev Sci Instrum; 2022 Jan; 93(1):015001. PubMed ID: 35104973 [TBL] [Abstract][Full Text] [Related]
9. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode. Liu H; Cong C; Zhao Q; Ma K Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645 [TBL] [Abstract][Full Text] [Related]
10. A compound cantilever beam piezoelectric harvester based on wind energy excitation. Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068 [TBL] [Abstract][Full Text] [Related]
11. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center. Chen J; Liu X; Wang H; Wang S; Guan M Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679 [TBL] [Abstract][Full Text] [Related]
12. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers. Koven R; Mills M; Gale R; Aksak B IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Study on Widening Bandwidth of Piezoelectric Vibration Energy Harvester with Nonlinear Characteristics. Qichang Z; Yang Y; Wei W Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832713 [TBL] [Abstract][Full Text] [Related]
14. Bi-Directional Piezoelectric Multi-Modal Energy Harvester Based on Saw-Tooth Cantilever Array. Čeponis A; Mažeika D; Kilikevičius A Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458865 [TBL] [Abstract][Full Text] [Related]
15. Dynamic Modeling and Experimental Validation of an Impact-Driven Piezoelectric Energy Harvester in Magnetic Field. Chen CD; Wu YH; Su PW Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33138234 [TBL] [Abstract][Full Text] [Related]
16. Research on the Characteristics and Application of Two-Degree-of-Freedom Diagonal Beam Piezoelectric Vibration Energy Harvester. Ma T; Sun K; Jia S; Du F; Zhang Z Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146072 [TBL] [Abstract][Full Text] [Related]
17. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester. Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394 [TBL] [Abstract][Full Text] [Related]
18. Modeling and Experimental Study of Vibration Energy Harvester with Triple-Frequency-Up Voltage Output by Vibration Mode Switching. Xu J; Liu Z; Dai W; Zhang R; Ge J Micromachines (Basel); 2024 Aug; 15(8):. PubMed ID: 39203664 [TBL] [Abstract][Full Text] [Related]
19. Ultra-Low Frequency Eccentric Pendulum-Based Electromagnetic Vibrational Energy Harvester. Li M; Deng H; Zhang Y; Li K; Huang S; Liu X Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33207547 [TBL] [Abstract][Full Text] [Related]
20. A Versatile Model for Describing Energy Harvesting Characteristics of Composite-Laminated Piezoelectric Cantilever Patches. Xue X; Sun Q; Ma Q; Wang J Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]