These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 31940778)

  • 1. A Piezo-Electromagnetic Coupling Multi-Directional Vibration Energy Harvester Based on Frequency Up-Conversion Technique.
    Shi G; Chen J; Peng Y; Shi M; Xia H; Wang X; Ye Y; Xia Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of output characteristics of positive feedback piezoelectric energy harvester based on nonlinear magnetic coupling.
    Shi R; Chen J; Ma T; Li C; Zhang W; Ye D
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38836718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi-Mode Broadband Vibration Energy Harvester Composed of Symmetrically Distributed U-Shaped Cantilever Beams.
    Huang X; Zhang C; Dai K
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33669395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and evaluation of a monostable symmetric piezoelectric energy harvester based on cantilever structure and magnetic excitation action.
    Wang L; Zhang Y; Wang T
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38727573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear Segmented Arc-Shaped Piezoelectric Branch Beam Energy Harvester for Ultra-Low Frequency Vibrations.
    Piyarathna IE; Thabet AM; Ucgul M; Lemckert C; Lim YY; Tang ZS
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a multi-direction piezoelectric and electromagnetic hybrid energy harvester used for ocean wave energy harvesting.
    Chen L; Li C; Fang J
    Rev Sci Instrum; 2023 Dec; 94(12):. PubMed ID: 38088781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid energy harvester inspired by bionic flapping wing structure based on magnetic levitation.
    Fan B; Fang J; Jiang S; Li C; Shao J; Liu W
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38214593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester.
    Kang JG; Kim H; Shin S; Kim BS
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Review of Piezoelectric Vibration Energy Harvesting with Magnetic Coupling Based on Different Structural Characteristics.
    Jiang J; Liu S; Feng L; Zhao D
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33919932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-Mechanical Characterization and Modeling of a Broadband Piezoelectric Microgenerator Based on Lithium Niobate.
    Panayanthatta N; Clementi G; Ouhabaz M; Margueron S; Bartasyte A; Lallart M; Basrour S; La Rosa R; Bano E; Montes L
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptivity of a leaf-inspired wind energy harvester with respect to wind speed and direction.
    Sabzpoushan S; Woias P
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38701828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the Influence of Coil Arrangement on the Output Characteristics of Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Sun Y; Du X; Liu F
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs.
    Elgamal MA; Elgamal H; Kouritem SA
    Sci Rep; 2024 May; 14(1):11401. PubMed ID: 38762520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetic Energy Harvester Targeting Wearable and Biomedical Applications.
    Digregorio G; Redouté JM
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters.
    Tien MH; D'Souza K
    Proc Math Phys Eng Sci; 2020 Jan; 476(2233):20190491. PubMed ID: 32082056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quasi-Zero Stiffness Vibration Sensing and Energy Harvesting Integration Based on Buckled Piezoelectric Euler Beam.
    Tuo J; Xu X; Li J; Dai T; Liu Z
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electro-Mechanical Coupling Analysis of L-Shaped Three-Dimensional Braided Piezoelectric Composites Vibration Energy Harvester.
    Sun M; Song M; Wei G; Hua F
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibration-Energy-Harvesting System: Transduction Mechanisms, Frequency Tuning Techniques, and Biomechanical Applications.
    Dong L; Closson AB; Jin C; Trase I; Chen Z; Zhang JXJ
    Adv Mater Technol; 2019 Oct; 4(10):. PubMed ID: 33829079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
    Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric Transducers: Complete Electromechanical Model with Parameter Extraction.
    Isaf ML; Rincón-Mora GA
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.