These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 31940903)

  • 1. Analysis of the Exposure of Organisms to the Action of Nanomaterials.
    Staroń A; Długosz O; Pulit-Prociak J; Banach M
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31940903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmful effects of metal(loid) oxide nanoparticles.
    Soares EV; Soares HMVM
    Appl Microbiol Biotechnol; 2021 Feb; 105(4):1379-1394. PubMed ID: 33521847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts.
    Djurišić AB; Leung YH; Ng AM; Xu XY; Lee PK; Degger N; Wu RS
    Small; 2015 Jan; 11(1):26-44. PubMed ID: 25303765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of Metal Oxide Nanoparticles.
    Girigoswami K
    Adv Exp Med Biol; 2018; 1048():99-122. PubMed ID: 29453535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts.
    Jeevanandam J; Kiew SF; Boakye-Ansah S; Lau SY; Barhoum A; Danquah MK; Rodrigues J
    Nanoscale; 2022 Feb; 14(7):2534-2571. PubMed ID: 35133391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research progress on the carcinogenicity of metal nanomaterials.
    Liu L; Kong L
    J Appl Toxicol; 2021 Sep; 41(9):1334-1344. PubMed ID: 33527484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From basic physics to mechanisms of toxicity: the "liquid drop" approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles.
    Sizochenko N; Rasulev B; Gajewicz A; Kuz'min V; Puzyn T; Leszczynski J
    Nanoscale; 2014 Nov; 6(22):13986-93. PubMed ID: 25317542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecotoxicological effects of zinc oxide nanoparticles (ZnO-NPs) on aquatic organisms: Current research and emerging trends.
    Bordin ER; Ramsdorf WA; Lotti Domingos LM; de Souza Miranda LP; Mattoso Filho NP; Cestari MM
    J Environ Manage; 2024 Jan; 349():119396. PubMed ID: 37890295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: hints from nano-QSAR studies.
    Gajewicz A; Schaeublin N; Rasulev B; Hussain S; Leszczynska D; Puzyn T; Leszczynski J
    Nanotoxicology; 2015 May; 9(3):313-25. PubMed ID: 24983896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations.
    Gupta D; Boora A; Thakur A; Gupta TK
    Environ Res; 2023 Aug; 231(Pt 3):116316. PubMed ID: 37270084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact.
    Buchman JT; Hudson-Smith NV; Landy KM; Haynes CL
    Acc Chem Res; 2019 Jun; 52(6):1632-1642. PubMed ID: 31181913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relating nanomaterial properties and microbial toxicity.
    Suresh AK; Pelletier DA; Doktycz MJ
    Nanoscale; 2013 Jan; 5(2):463-74. PubMed ID: 23203029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxicity induced by metal oxide nanoparticles: a weight of evidence study and effect of particle surface and electronic properties.
    Golbamaki A; Golbamaki N; Sizochenko N; Rasulev B; Leszczynski J; Benfenati E
    Nanotoxicology; 2018 Dec; 12(10):1113-1129. PubMed ID: 29888633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop.
    Warheit DB; Borm PJ; Hennes C; Lademann J
    Inhal Toxicol; 2007 Jun; 19(8):631-43. PubMed ID: 17510836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms.
    Golbamaki N; Rasulev B; Cassano A; Marchese Robinson RL; Benfenati E; Leszczynski J; Cronin MT
    Nanoscale; 2015 Feb; 7(6):2154-98. PubMed ID: 25580680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the toxicity of a large set of metal and metal oxide nanoparticles using the OCHEM platform.
    Kovalishyn V; Abramenko N; Kopernyk I; Charochkina L; Metelytsia L; Tetko IV; Peijnenburg W; Kustov L
    Food Chem Toxicol; 2018 Feb; 112():507-517. PubMed ID: 28802948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The carcinogenic potential of nanomaterials, their release from products and options for regulating them.
    Becker H; Herzberg F; Schulte A; Kolossa-Gehring M
    Int J Hyg Environ Health; 2011 Jun; 214(3):231-8. PubMed ID: 21168363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunotoxicity of metal and metal oxide nanoparticles: from toxic mechanisms to metabolism and outcomes.
    Bi J; Mo C; Li S; Huang M; Lin Y; Yuan P; Liu Z; Jia B; Xu S
    Biomater Sci; 2023 Jun; 11(12):4151-4183. PubMed ID: 37161951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticles in the environment: Sources, detection and ecotoxicology.
    McGillicuddy E; Murray I; Kavanagh S; Morrison L; Fogarty A; Cormican M; Dockery P; Prendergast M; Rowan N; Morris D
    Sci Total Environ; 2017 Jan; 575():231-246. PubMed ID: 27744152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.