These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 31940953)

  • 1. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions.
    Zhong Z; Furuya T; Ueno K; Yamaguchi H; Hitachi K; Tsuchida K; Tani M; Tian J; Komatsu S
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31940953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and Biochemical Approaches Elucidate the Role of Millimeter-Wave Irradiation in Wheat Growth under Flooding Stress.
    Komatsu S; Tsutsui Y; Furuya T; Yamaguchi H; Hitachi K; Tsuchida K; Tani M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic and Biological Analyses Reveal the Effect on Growth under Flooding Stress of Chickpea Irradiated with Millimeter Waves.
    Komatsu S; Maruyama J; Furuya T; Yin X; Yamaguchi H; Hitachi K; Miyashita N; Tsuchida K; Tani M
    J Proteome Res; 2021 Oct; 20(10):4718-4727. PubMed ID: 34455783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Millmeter-wave irradiation regulates mRNA-expression and the ubiquitin-proteasome system in wheat exposed to flooding stress.
    Komatsu S; Nishiuchi T; Furuya T; Tani M
    J Proteomics; 2024 Mar; 294():105073. PubMed ID: 38218429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques.
    Nanjo Y; Skultety L; Ashraf Y; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):3989-4002. PubMed ID: 20540568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of proteins in soybean roots under flooding and drought stresses.
    Oh M; Komatsu S
    J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of the effect of plant-derived smoke on soybean during recovery from flooding stress.
    Li X; Rehman SU; Yamaguchi H; Hitachi K; Tsuchida K; Yamaguchi T; Sunohara Y; Matsumoto H; Komatsu S
    J Proteomics; 2018 Jun; 181():238-248. PubMed ID: 29704570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane Proteomics to Understand Enhancement Effects of Millimeter-Wave Irradiation on Wheat Root under Flooding Stress.
    Komatsu S; Hamada K; Furuya T; Nishiuchi T; Tani M
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant-derived smoke enhances plant growth through ornithine-synthesis pathway and ubiquitin-proteasome pathway in soybean.
    Zhong Z; Kobayashi T; Zhu W; Imai H; Zhao R; Ohno T; Rehman SU; Uemura M; Tian J; Komatsu S
    J Proteomics; 2020 Jun; 221():103781. PubMed ID: 32294531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.
    Khatoon A; Rehman S; Hiraga S; Makino T; Komatsu S
    J Proteomics; 2012 Oct; 75(18):5706-23. PubMed ID: 22850269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and biochemical analyses of the cotyledon and root of flooding-stressed soybean plants.
    Komatsu S; Makino T; Yasue H
    PLoS One; 2013; 8(6):e65301. PubMed ID: 23799004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings.
    Nanjo Y; Maruyama K; Yasue H; Yamaguchi-Shinozaki K; Shinozaki K; Komatsu S
    Plant Mol Biol; 2011 Sep; 77(1-2):129-44. PubMed ID: 21656040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of proteomic changes in roots of soybean seedlings during recovery after flooding.
    Salavati A; Khatoon A; Nanjo Y; Komatsu S
    J Proteomics; 2012 Jan; 75(3):878-93. PubMed ID: 22037232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress.
    Kausar R; Nishiuchi T; Komatsu S
    J Proteomics; 2024 Mar; 294():105072. PubMed ID: 38218428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of soybean root including hypocotyl during recovery from drought stress.
    Khan MN; Komatsu S
    J Proteomics; 2016 Jul; 144():39-50. PubMed ID: 27292084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.
    Oh MW; Nanjo Y; Komatsu S
    Protein Pept Lett; 2014; 21(9):911-47. PubMed ID: 24702262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.