BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31940964)

  • 1. Controlling Shapes in a Coaxial Flow Focusing Microfluidic Device: Experiments and Theory.
    Rodriguez-Trujillo R; Kim-Im YH; Hernandez-Machado A
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31940964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Emulsion Generation Using a Polydimethylsiloxane (PDMS) Co-axial Flow Focus Device.
    Cole RH; Tran TM; Abate AR
    J Vis Exp; 2015 Dec; (106):e53516. PubMed ID: 26780079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.
    Kim C; Chung S; Kim YE; Lee KS; Lee SH; Oh KW; Kang JY
    Lab Chip; 2011 Jan; 11(2):246-52. PubMed ID: 20967338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial flow focusing in poly(dimethylsiloxane) microfluidic devices.
    Tran TM; Cater S; Abate AR
    Biomicrofluidics; 2014 Jan; 8(1):016502. PubMed ID: 24753732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Flow-Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry.
    Yalikun Y; Ota N; Guo B; Tang T; Zhou Y; Lei C; Kobayashi H; Hosokawa Y; Li M; Enrique Muñoz H; Di Carlo D; Goda K; Tanaka Y
    Cytometry A; 2020 Sep; 97(9):909-920. PubMed ID: 31856398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions.
    Fiddes LK; Raz N; Srigunapalan S; Tumarkan E; Simmons CA; Wheeler AR; Kumacheva E
    Biomaterials; 2010 May; 31(13):3459-64. PubMed ID: 20167361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectrophoresis-based 3D-focusing of microscale entities in microfluidic devices.
    Alnaimat F; Ramesh S; Alazzam A; Hilal-Alnaqbi A; Waheed W; Mathew B
    Cytometry A; 2018 Aug; 93(8):811-821. PubMed ID: 30160818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nozzle-Shaped Electrode Configuration for Dielectrophoretic 3D-Focusing of Microparticles.
    Krishna S; Alnaimat F; Mathew B
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31480490
    [No Abstract]   [Full Text] [Related]  

  • 11. Design and Fabrication of a Microfluidic Chip for Particle Size-Exclusion and Enrichment.
    Yang L; Ye T; Zhao X; Hu T; Wei Y
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconfigurable terahertz metamaterial device with pressure memory.
    Wang J; Liu S; Guruswamy S; Nahata A
    Opt Express; 2014 Feb; 22(4):4065-74. PubMed ID: 24663728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of a Dielectrophoretic Tapered Aluminum Microelectrode Array with a Flow Focusing Technique.
    Rashid NFA; Deivasigamani R; Wee MFMR; Hamzah AA; Buyong MR
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Deformation of Polydimethylsiloxane (PDMS) Microfluidic Channels Filled with Embedded Circular Obstacles under Certain Circumstances.
    Roh C; Lee J; Kang C
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27322239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single stream inertial focusing in low aspect-ratio triangular microchannels.
    Mukherjee P; Wang X; Zhou J; Papautsky I
    Lab Chip; 2018 Dec; 19(1):147-157. PubMed ID: 30488049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control.
    Markov DA; Manuel S; Shor LM; Opalenik SR; Wikswo JP; Samson PC
    Biomed Microdevices; 2010 Feb; 12(1):135-44. PubMed ID: 19859812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic focusing--a versatile tool.
    Golden JP; Justin GA; Nasir M; Ligler FS
    Anal Bioanal Chem; 2012 Jan; 402(1):325-35. PubMed ID: 21952728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Digital Twin of the Coaxial Lamination Mixer for the Systematic Study of Mixing Performance and the Prediction of Precipitated Nanoparticle Properties.
    Cai S; Erfle P; Dietzel A
    Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation.
    Guan G; Wu L; Bhagat AA; Li Z; Chen PC; Chao S; Ong CJ; Han J
    Sci Rep; 2013; 3():1475. PubMed ID: 23502529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Acoustic Wave-Based Microfluidic Device for Microparticles Manipulation: Effects of Microchannel Elasticity on the Device Performance.
    Mezzanzanica G; Français O; Mariani S
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.