BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31940964)

  • 21. Confocal microscopic evaluation of mixing performance for three-dimensional microfluidic mixer.
    Yasui T; Omoto Y; Osato K; Kaji N; Suzuki N; Naito T; Okamoto Y; Tokeshi M; Shamoto E; Baba Y
    Anal Sci; 2012; 28(1):57-9. PubMed ID: 22232225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment.
    Blake AJ; Pearce TM; Rao NS; Johnson SM; Williams JC
    Lab Chip; 2007 Jul; 7(7):842-9. PubMed ID: 17594002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Generation of All-Aqueous Double and Triple Emulsions.
    Jeyhani M; Thevakumaran R; Abbasi N; Hwang DK; Tsai SSH
    Small; 2020 Feb; 16(7):e1906565. PubMed ID: 31985166
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidics-based assay on the effects of microenvironmental geometry and aqueous flow on bacterial adhesion behaviors.
    Liu Y; Wang JC; Ren L; Tu Q; Liu WM; Wang XQ; Liu R; Zhang YR; Wang JY
    J Pharm Anal; 2011 Aug; 1(3):175-183. PubMed ID: 29403696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembly of fluorinated gradient copolymer in three-dimensional co-flow focusing microfluidic.
    Zhu C; Yao R; Chen Y; Feng M; Ma S; Zhang C
    J Colloid Interface Sci; 2018 Sep; 526():75-82. PubMed ID: 29723794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
    Kwon JY; Kim T; Kim J; Cho Y
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data.
    Costa PF; Albers HJ; Linssen JEA; Middelkamp HHT; van der Hout L; Passier R; van den Berg A; Malda J; van der Meer AD
    Lab Chip; 2017 Aug; 17(16):2785-2792. PubMed ID: 28717801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device.
    Xu JH; Chen R; Wang YD; Luo GS
    Lab Chip; 2012 May; 12(11):2029-36. PubMed ID: 22508390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow lithography in ultraviolet-curable polydimethylsiloxane microfluidic chips.
    Kim J; An H; Seo Y; Jung Y; Lee JS; Choi N; Bong KW
    Biomicrofluidics; 2017 Mar; 11(2):024120. PubMed ID: 28469763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical and Experimental Investigation on Water-Me
    Yang Y; Zhou XL; Zhou NF; Shao WQ; Tao LR
    Cryo Letters; 2017; 38(1):37-42. PubMed ID: 28376138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation.
    Zeng HL; Li HF; Wang X; Lin JM
    Talanta; 2006 Mar; 69(1):226-31. PubMed ID: 18970558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic approach for the fabrication of cell-laden hollow fibers for endothelial barrier research.
    Nguyen TPT; Tran BM; Lee NY
    J Mater Chem B; 2018 Oct; 6(38):6057-6066. PubMed ID: 32254816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING.
    Young OM; Felix BM; Fuge MD; Krieger A; Sochol RD
    Proc IEEE Int Conf Micro Electro Mech Syst; 2024 Jan; 2024():1174-1177. PubMed ID: 38482160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A stretchable conductive Polypyrrole Polydimethylsiloxane device fabricated by simple soft lithography and oxygen plasma treatment.
    Guo XC; Hu WW; Tan SH; Tsao CW
    Biomed Microdevices; 2018 Mar; 20(2):30. PubMed ID: 29564563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrokinetic flow control in microfluidic chips using a field-effect transistor.
    Horiuchi K; Dutta P
    Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Soft Tooling Photopolymers and Processes for Micromixing Devices with Variable Cross-Section.
    Martínez-López JI; Betancourt Cervantes HA; Cuevas Iturbe LD; Vázquez E; Naula EA; Martínez López A; Siller HR; Mendoza-Buenrostro C; Rodríguez CA
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.
    Liu C; Cui D; Li H
    Biosens Bioelectron; 2010 Sep; 26(1):255-61. PubMed ID: 20655729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.